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a b s t r a c t

We introduce the non-unit count of an interval graph as the minimum number of intervals
in an interval representation whose lengths deviate from one. We characterize a variant of
the non-unit count (where all interval lengths are required to be at least one) and graphs
with non-unit count 1.
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1. Introduction

Interval graphs reflect the intersection structure of intervals in the real line. For each vertex of an interval graph
G = (V , E) there is an interval Iv such that uv ∈ E if and only if Iu ∩ Iv ≠ ∅. Each such collection also defines an interval
order as a partial order P = (V , <) via u < v if and only if Iu is completely left of Iv . Interval graphs and interval orders have
been characterized in various ways (cf., e.g. [6,8,11]). For more details, the interested reader is referred to [5,9].

A natural question, apparently first asked by R.L. Graham, is howmany different interval lengths are needed to represent
an interval graph. He introduced the interval count as the minimum number of distinct interval lengths necessary in an
interval representation of an interval graph. Interval graphs with interval count 1 are the unit interval graphs. They were
first characterized by Roberts [15] as the class of proper interval graphs or, equivalently, as the claw-free interval graphs.
Shorter proofs of these characterizations and efficient recognition algorithms can be found in, e.g., [1,4,7,12]. For interval
graphs with interval count kwith k ≥ 2 the recognition problem seems to be open. Further results on the interval count can
be found in e.g. [2,3].

Graham conjectured that the interval count of a graph G is at most k+ 1 if for some vertex x the graph G r x has interval
count k. This conjecture was proved by Leibowitz et al. [10] for k = 1 and disproved for k ≥ 2. Observe that in the first case,
G r x is a unit interval graph and xmust be contained in every claw of G.

Skrien [16] and Rautenbach and Szwarcfiter [13] investigated a subclass of graphs with interval count 2. In [13] Rauten-
bach and Szwarcfiter give a forbidden subgraph characterization of those graphs that have an interval representation using
unit intervals and single points. They also describe a linear time recognition algorithm. In [14] the same authors characterize
graphs having a representation by open and closed unit intervals.

In the followingwe ask a slightly different question: howmany intervals in an interval representationmust have a length
different from one? In Section 2 we collect the basic notations and definitions. In Sections 3 and 4 we present some general
results and give exact answers for two special cases where all interval lengths are required to be at least one or where all
but one interval have the same length.
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Fig. 1. Two equivalent interval orders with different non-unit count.

Fig. 2. G r a is claw-free but τ(G) = 2.

2. Preliminaries

Let G = (V , E) be an interval graph and R a collection of intervals such that for each v ∈ V there is an interval Iv ∈ R
and uv ∈ E if and only if Iu and Iv have a nonempty intersection. We then say that R realizes G. The set of all collections
of intervals realizing G is denoted by R(G). For an interval I let l(I) (r(I)) be its left (right) endpoint. W.l.o.g. we assume
throughout that all interval endpoints are distinct. Let |I| denote the length of I . The collection R of intervals also realizes
the partial order (V , <) given by u < v if and only if r(Iu) < l(Iv). R(P) is the set of all realizers of the interval order P .

We call two interval orders P1 and P2 equivalent (P1 ∼ P2) if they have realizers which realize the same interval graph G.
The corresponding equivalence class is denoted byP (G). A function f operating on interval orders is a comparability invariant
if f (P1) = f (P2) whenever P1 ∼ P2.

We call a bipartite graph K1,r , r ≥ 3, a star and a claw, if r = 3. A vertex u of a graph G is a star center of G if u together
with some of its neighbors N ′(u) ⊆ N(u) induces a star in G. The vertices in N ′(u) are then called leaves. The set of star
centers of G is denoted by Z = Z(G), the set of leaves by U = U(G). Observe that the sets Z and U do not have to be disjoint.
For an interval order P the star centers Z(P) of P are the star centers of the corresponding interval graph.

An interval graph is a unit interval graph if it has a realizer in which all intervals have the same length. The corresponding
partial order is then called a semiorder. We call a collection of intervals R a proper collection if in R no interval properly
contains another. Roberts [15] showed that unit interval graphs are characterized by the fact that they have a realization by
a proper collection of intervals. Moreover, they are precisely the interval graphs having no induced claw.

Let P be an interval order and R ∈ R(P) a realization. The non-unit count τ(R) of R is the number of intervals in R with
length different from one. Similarly, let

τ(P) = min{τ(R)|R ∈ R(P)} (1)

and

τ(G) = min{τ(R)|R ∈ R(G)}. (2)

Then, for an interval graph G and P ∈ P (G) we have τ(G) ≤ τ(P) and, obviously, τ(G) = min{τ(P)|P ∈ P (G)}. For unit
interval graphs Gwe have τ(G) = τ(P) = 0 for all semiorders P ∈ P (G). This seems to suggest that the non-unit count is a
comparability invariant. This, however, is not true. Fig. 1 shows two interval orders with P1 ∼ P2 and τ(P1) = 3, τ (P2) = 2.

Since unit interval graphs are the claw-free interval graphs, onemay conjecture that the non-unit count is the cardinality
ν(G) of the smallest setW ⊆ V such that G r W is claw-free. Again, this is not true. To see this, consider Fig. 2.

If we remove either a or b, the resulting graph is claw-free. On the other hand, the intervals Ia and Ib have to overlap and
each of both has to cover one of two non-overlapping intervals. So τ(G) = 2.

Indeed, in general we have ν(G) ≤ τ(G). A related parameter is introduced in [5]. Fishburn defines κ(n) as themaximum
cardinality k such that every interval graph on n vertices contains a unit interval graph on k vertices. For interval graphs G
on n vertices this obviously gives ν(G) ≤ n − κ(n).

3. The normalized non-unit count

In this section we consider the normalized non-unit count where we consider only interval representations in which all
intervals have length at least one. We denote the normalized non-unit count as τ>(R) (and τ>(P), τ>(G), resp.).

Consider an interval representation R ∈ R(G) and a star center z ∈ Z . Then Iz properly contains at least one interval Ix
for some x ∈ V r Z . Hence, if |Ix| ≥ 1, then |Iz | > 1. This immediately implies τ>(G) ≥ |Z |. Since τ>(P) ≥ τ>(G) for all
P ∈ P (G), we also have τ>(P) ≥ |Z |.
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