

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Best monotone degree conditions for binding number and cycle structure

D. Bauer^a, A. Nevo^a, E. Schmeichel^b, D.R. Woodall^c, M. Yatauro^{d,*}

- ^a Department of Mathematical Sciences, Stevens Institute of Technology, Hoboken, NJ 07030, USA
- ^b Department of Mathematics, San José State University, San José, CA 95192, USA
- ^c School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, UK
- ^d Department of Mathematics, Penn State, Brandywine Campus, Media, PA 19063, USA

ARTICLE INFO

Article history: Received 15 June 2013 Received in revised form 21 October 2013 Accepted 23 December 2013 Available online 10 January 2014

Keywords:
Toughness
Binding number
Cycle structure
Degree sequence
Best monotone

ABSTRACT

Woodall has shown that every 3/2-binding graph is hamiltonian. In this paper, we consider best monotone degree conditions for a b-binding graph to be hamiltonian, for $1 \le b < 3/2$. We first establish such a condition for b = 1. We then give a best monotone degree condition for a b-binding graph to be 1-tough, for 1 < b < 3/2, and conjecture that this condition is also the best monotone degree condition for a b-binding graph to be hamiltonian, for 1 < b < 3/2.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

We consider only simple graphs without loops or multiple edges. Our terminology and notation are standard except as indicated, and a good reference for any undefined terms or notation is [12]. We mention that for two graphs G, H on disjoint vertex sets, we will denote their *disjoint union* by $G \cup H$ and their *join* by G + H.

An integer sequence $\pi=(d_1\leq d_2\leq\cdots\leq d_n)$ is called graphical if there exists a graph G having π as its degree sequence, and we then call G a realization of π . If P is a graph property (e.g., hamiltonicity, k-connectedness), we call a graphical sequence π forcibly P if every realization of π has property P. If $\pi=(d_1\leq d_2\leq\cdots\leq d_n)$ and $\pi'=(d_1'\leq d_2'\leq\cdots\leq d_n')$ are two n-sequences, not necessarily graphical, we say π' majorizes π , denoted $\pi'\geq\pi$, if $d_i'\geq d_i$ for all i. We write $\pi'\geq\pi$ if $\pi'>\pi$ and $\pi'\neq\pi$.

A condition on the vertex degrees of a graph is called *monotone* if $\pi' \geq \pi$ satisfies the condition whenever π does, and a graph property is called *ancestral* if adding edges preserves the property. Historically, monotone conditions on the vertex degrees have been used to provide sufficient conditions for a graph to have certain ancestral properties, such as k-connectedness [6,7]. A general method for constructing such conditions was given in [8].

Sufficient conditions for π to be forcibly hamiltonian were given by several authors [7,10,11], culminating in the following theorem of Chvátal [9].

Theorem 1.1. Let $\pi = (d_1 \le d_2 \le \cdots \le d_n)$ be a graphical sequence, with $n \ge 3$. If $d_i \le i \Longrightarrow d_{n-i} \ge n-i$ for $1 \le i < \frac{n}{2}$, then π is forcibly hamiltonian.

^{*} Corresponding author. Tel.: +1 908 358 8017; fax: +1 908 429 4215.

E-mail addresses: dbauer@stevens.edu (D. Bauer), anevo@stevens.edu (A. Nevo), schmeichel@math.sjsu.edu (E. Schmeichel), douglas.woodall@nottingham.ac.uk (D.R. Woodall), mry3@psu.edu (M. Yatauro).

Unlike its predecessors, Theorem 1.1 has the property that if a sequence π fails to satisfy it, then π is majorized by a sequence π' with a nonhamiltonian realization G'. As we will see below, this implies that the degree condition in Theorem 1.1 is the best possible monotone condition to guarantee that π is forcibly hamiltonian. For this reason, we call Theorem 1.1 a best monotone hamiltonian theorem.

Recent work has focused almost entirely on finding best monotone degree conditions for various single ancestral graph properties (e.g., k-edge-connectedness [3], having a 2-factor [1], etc.). In this paper, we consider how to establish best monotone degree conditions to guarantee that a graph with property P_1 also has property P_2 , where P_1 and P_2 are ancestral graph properties. We will refer to such conditions as best monotone ($P_1 \Rightarrow P_2$) conditions. A formal framework to establish that ($P_1 \Rightarrow P_2$) conditions are best monotone is given in Section 2. We will be particularly interested in the case where P_1 is 'b-binding' and P_2 is '1-tough', ancestral graph properties which we now define.

In [13], Woodall introduced the notion of the binding number of a graph G. If $S \subseteq V(G)$, let N(S) denote the set of neighbors of S in G, including any vertices of S that have neighbors in S. For $b \ge 0$, we call G S behinding if S if S in S in

$$\operatorname{bind}(G) = \min \left\{ \frac{|N(S)|}{|S|} \middle| \emptyset \neq S \subseteq V(G), \ N(S) \neq V(G) \right\},\,$$

and a set $S \subseteq V(G)$ attaining this minimum is called a *binding set* of G. In particular, b-hinding theorem was given in [4].

The most important theorem relating binding number and cycle structure is the following result of Woodall [13,14], in which the constant 3/2 is best possible.

Theorem 1.2. If bind(G) $\geq \frac{3}{2}$, then G is hamiltonian.

Chvátal introduced the notion of the toughness of a graph in [9]. Let $\omega(G)$ denote the number of components of a graph G. For $t \geq 0$, we call G t-tough if $t \cdot \omega(G - X) \leq |X|$, for every $X \subseteq V(G)$ with $\omega(G - X) \geq 2$. The toughness of a noncomplete graph G, denoted $\tau(G)$, is the maximum $t \geq 0$ for which G is t-tough, so that

$$\tau(G) = \min \left\{ \left. \frac{|X|}{\omega(G - X)} \right| X \subset V(G) \text{ and } \omega(G - X) \ge 2 \right\}.$$

By convention, $\tau(K_n) := (n-1)$. A best monotone t-tough theorem was given in [2].

In Sections 3 through 6, we consider best monotone (b-binding \Rightarrow hamiltonian) degree conditions, for $1 \le b \le 3/2$. In Section 3 we give such a condition when b=1. After describing a method to do so in Section 4, we construct in Section 5 a best monotone (b-binding \Rightarrow 1-tough) degree condition, for 1 < b < 3/2. Finally, in Section 6, we apply the framework of Section 2 to describe exactly what would be needed to show that the best monotone (b-binding \Rightarrow 1-tough) condition in Section 5 is also a best monotone (b-binding \Rightarrow hamiltonian) condition, for 1 < b < 3/2.

2. Best monotone $(P_1 \Rightarrow P_2)$ theorems

Throughout this paper, graph properties will be assumed ancestral. If P_1 and P_2 are graph properties (e.g., being 1-tough, hamiltonian, etc.), we call a graphical sequence π forcibly $P_1 \Rightarrow P_2$ if every realization of π with property P_1 also has property P_2 . Given graph properties P_1 and P_2 , consider a theorem T which declares certain degree sequences to be forcibly $P_1 \Rightarrow P_2$, rendering no decision on the remaining degree sequences. We call such a theorem T a forcibly $(P_1 \Rightarrow P_2)$ theorem (or just a $(P_1 \Rightarrow P_2)$ theorem, for brevity). We call a $(P_1 \Rightarrow P_2)$ theorem T monotone if, for any two degree sequences π , π' , whenever T declares π forcibly $P_1 \Rightarrow P_2$ and $\pi' \geq \pi$, then T declares π' forcibly $P_1 \Rightarrow P_2$. We call a $(P_1 \Rightarrow P_2)$ theorem T optimal if whenever T does not declare π forcibly $P_1 \Rightarrow P_2$, then π is not forcibly $P_1 \Rightarrow P_2$. We call a $(P_1 \Rightarrow P_2)$ theorem T weakly optimal if for any sequence π (not necessarily graphical) which T does not declare forcibly $P_1 \Rightarrow P_2$, π is majorized by a degree (i.e., graphical) sequence which is not forcibly $P_1 \Rightarrow P_2$. In view of the following result, a $(P_1 \Rightarrow P_2)$ theorem which is both monotone and weakly optimal is called a best monotone $(P_1 \Rightarrow P_2)$ theorem.

Theorem 2.1. Let T, T_0 be monotone $(P_1 \Rightarrow P_2)$ theorems, with T_0 weakly optimal. If T declares a degree sequence π to be forcibly $P_1 \Rightarrow P_2$, then so does T_0 .

Proof. Suppose there exists a degree sequence π that T declares forcibly $P_1 \Rightarrow P_2$, but T_0 does not. Since T_0 is weakly optimal, there exists a degree sequence $\pi' \geq \pi$ which is not forcibly $P_1 \Rightarrow P_2$. This means that T does not declare π' forcibly $P_1 \Rightarrow P_2$. But if T declares π forcibly $P_1 \Rightarrow P_2$, $\pi' \geq \pi$, and T does not declare π' forcibly $P_1 \Rightarrow P_2$, then T is not monotone, a contradiction.

To illustrate the concepts just introduced, we present two easy examples of a best monotone ($P_1 \Rightarrow P_2$) theorem. Both are slightly modified versions of Theorem 1.1. The first example is a best monotone (2-connected \Rightarrow hamiltonian) theorem.

Theorem 2.2. Let $\pi = (d_1 \le d_2 \le \cdots \le d_n)$ be a graphical sequence. If $d_i \le i$ implies $d_{n-i} \ge n-i$, for $1 \le i < \frac{n}{2}$, then every 2-connected realization of π is hamiltonian.

Download English Version:

https://daneshyari.com/en/article/421082

Download Persian Version:

https://daneshyari.com/article/421082

<u>Daneshyari.com</u>