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a b s t r a c t

Woodall has shown that every 3/2-binding graph is hamiltonian. In this paper, we consider
bestmonotone degree conditions for a b-binding graph to be hamiltonian, for 1 ≤ b < 3/2.
We first establish such a condition for b = 1. We then give a best monotone degree con-
dition for a b-binding graph to be 1-tough, for 1 < b < 3/2, and conjecture that this con-
dition is also the best monotone degree condition for a b-binding graph to be hamiltonian,
for 1 < b < 3/2.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

We consider only simple graphs without loops or multiple edges. Our terminology and notation are standard except as
indicated, and a good reference for any undefined terms or notation is [12]. Wemention that for two graphs G,H on disjoint
vertex sets, we will denote their disjoint union by G ∪ H and their join by G + H .

An integer sequenceπ = (d1 ≤ d2 ≤ · · · ≤ dn) is called graphical if there exists a graphGhavingπ as its degree sequence,
and we then call G a realization of π . If P is a graph property (e.g., hamiltonicity, k-connectedness), we call a graphical
sequence π forcibly P if every realization of π has property P . If π = (d1 ≤ d2 ≤ · · · ≤ dn) and π ′

= (d′

1 ≤ d′

2 ≤ · · · ≤ d′
n)

are two n-sequences, not necessarily graphical, we say π ′ majorizes π , denoted π ′
≥ π , if d′

i ≥ di for all i. We write π ′ 
 π
if π ′

≥ π and π ′
≠ π .

A condition on the vertex degrees of a graph is called monotone if π ′
≥ π satisfies the condition whenever π does,

and a graph property is called ancestral if adding edges preserves the property. Historically, monotone conditions on the
vertex degrees have been used to provide sufficient conditions for a graph to have certain ancestral properties, such as
k-connectedness [6,7]. A general method for constructing such conditions was given in [8].

Sufficient conditions forπ to be forcibly hamiltonianwere given by several authors [7,10,11], culminating in the following
theorem of Chvátal [9].

Theorem 1.1. Let π = (d1 ≤ d2 ≤ · · · ≤ dn) be a graphical sequence, with n ≥ 3. If di ≤ i H⇒ dn−i ≥ n − i for 1 ≤ i < n
2 ,

then π is forcibly hamiltonian.
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Unlike its predecessors, Theorem 1.1 has the property that if a sequence π fails to satisfy it, then π is majorized by a
sequenceπ ′ with a nonhamiltonian realizationG′. Aswewill see below, this implies that the degree condition in Theorem1.1
is the best possible monotone condition to guarantee that π is forcibly hamiltonian. For this reason, we call Theorem 1.1 a
best monotone hamiltonian theorem.

Recent work has focused almost entirely on finding best monotone degree conditions for various single ancestral graph
properties (e.g., k-edge-connectedness [3], having a 2-factor [1], etc.). In this paper, we consider how to establish bestmono-
tone degree conditions to guarantee that a graph with property P1 also has property P2, where P1 and P2 are ancestral graph
properties. We will refer to such conditions as best monotone (P1 ⇒ P2) conditions. A formal framework to establish that
(P1 ⇒ P2) conditions are best monotone is given in Section 2. We will be particularly interested in the case where P1 is
‘b-binding’ and P2 is ‘1-tough’, ancestral graph properties which we now define.

In [13], Woodall introduced the notion of the binding number of a graph G. If S ⊆ V (G), let N(S) denote the set of
neighbors of S in G, including any vertices of S that have neighbors in S. For b ≥ 0, we call G b-binding if b|S| ≤ |N(S)|, for all
S ⊆ V (G)withN(S) ≠ V (G). The binding number ofG, denoted bind(G), is themaximum b ≥ 0 such thatG is b-binding. Thus,

bind(G) = min


|N(S)|
|S|

 ∅ ≠ S ⊆ V (G), N(S) ≠ V (G)


,

and a set S ⊆ V (G) attaining this minimum is called a binding set of G. In particular, bind(Kn) = n − 1. A best monotone
b-binding theorem was given in [4].

The most important theorem relating binding number and cycle structure is the following result of Woodall [13,14], in
which the constant 3/2 is best possible.

Theorem 1.2. If bind(G) ≥
3
2 , then G is hamiltonian.

Chvátal introduced the notion of the toughness of a graph in [9]. Let ω(G) denote the number of components of a graph
G. For t ≥ 0, we call G t-tough if t · ω(G− X) ≤ |X |, for every X ⊆ V (G) with ω(G− X) ≥ 2. The toughness of a noncomplete
graph G, denoted τ(G), is the maximum t ≥ 0 for which G is t-tough, so that

τ(G) = min


|X |

ω(G − X)

 X ⊂ V (G) and ω(G − X) ≥ 2


.

By convention, τ(Kn) := (n − 1). A best monotone t-tough theorem was given in [2].
In Sections 3 through 6, we consider best monotone (b-binding ⇒ hamiltonian) degree conditions, for 1 ≤ b ≤ 3/2. In

Section 3 we give such a condition when b = 1. After describing a method to do so in Section 4, we construct in Section 5
a best monotone (b-binding ⇒ 1-tough) degree condition, for 1 < b < 3/2. Finally, in Section 6, we apply the framework
of Section 2 to describe exactly what would be needed to show that the best monotone (b-binding ⇒ 1-tough) condition in
Section 5 is also a best monotone (b-binding ⇒ hamiltonian) condition, for 1 < b < 3/2.

2. Best monotone (P1 ⇒ P2) theorems

Throughout this paper, graph properties will be assumed ancestral. If P1 and P2 are graph properties (e.g., being 1-tough,
hamiltonian, etc.), we call a graphical sequenceπ forcibly P1 ⇒ P2 if every realization ofπ with property P1 also has property
P2. Given graph properties P1 and P2, consider a theorem T which declares certain degree sequences to be forcibly P1 ⇒ P2,
rendering no decision on the remaining degree sequences. We call such a theorem T a forcibly (P1 ⇒ P2) theorem (or just a
(P1 ⇒ P2) theorem, for brevity).We call a (P1 ⇒ P2) theorem T monotone if, for any two degree sequencesπ, π ′, whenever T
declaresπ forcibly P1 ⇒ P2 andπ ′

≥ π , then T declaresπ ′ forcibly P1 ⇒ P2.We call a (P1 ⇒ P2) theorem T optimal if when-
ever T does not declareπ forcibly P1 ⇒ P2, thenπ is not forcibly P1 ⇒ P2.We call a (P1 ⇒ P2) theorem T weakly optimal if for
any sequenceπ (not necessarily graphical)which T does not declare forcibly P1 ⇒ P2, π ismajorized by a degree (i.e., graph-
ical) sequence which is not forcibly P1 ⇒ P2. In view of the following result, a (P1 ⇒ P2) theorem which is both monotone
and weakly optimal is called a best monotone (P1 ⇒ P2) theorem.

Theorem 2.1. Let T , T0 be monotone (P1 ⇒ P2) theorems, with T0 weakly optimal. If T declares a degree sequence π to be
forcibly P1 ⇒ P2, then so does T0.

Proof. Suppose there exists a degree sequence π that T declares forcibly P1 ⇒ P2, but T0 does not. Since T0 is weakly op-
timal, there exists a degree sequence π ′

≥ π which is not forcibly P1 ⇒ P2. This means that T does not declare π ′ forcibly
P1 ⇒ P2. But if T declares π forcibly P1 ⇒ P2, π ′

≥ π , and T does not declare π ′ forcibly P1 ⇒ P2, then T is not monotone,
a contradiction. �

To illustrate the concepts just introduced, we present two easy examples of a best monotone (P1 ⇒ P2) theorem. Both
are slightly modified versions of Theorem 1.1. The first example is a best monotone (2-connected ⇒ hamiltonian) theorem.

Theorem 2.2. Let π = (d1 ≤ d2 ≤ · · · ≤ dn) be a graphical sequence. If di ≤ i implies dn−i ≥ n − i, for 2 ≤ i < n
2 , then

every 2-connected realization of π is hamiltonian.
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