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a b s t r a c t

It is well known that the greedy algorithm solves matroid base problems for all linear cost
functions and is, in fact, correct if and only if the underlying combinatorial structure of
the problem is a matroid. Moreover, the algorithm can be applied to problems with sum,
bottleneck, algebraic sum or k-sum objective functions.

In this paper, we address matroid base problems with a more general – ‘‘universal’’
– objective function which contains the previous ones as special cases. This universal
objective function is of the sum type and associatesmultiplicativeweightswith the ordered
cost coefficients of the elements of matroid bases such that, by choosing appropriate
weights, many different – classical and new – objectives can be modeled. We show that
the greedy algorithm is applicable to a larger class of objective functions than commonly
known and, as such, it solves universal matroid base problems with non-negative or non-
positive weight coefficients. Based on problems with mixed weights and a single (−, +)-
sign change in the universal weight vector, we give a characterization of uniformmatroids.
In case of multiple sign changes, we use partition matroids. For non-uniform matroids,
single sign change problems can be reduced to problems in minors obtained by deletion
and contraction. Finally, we discuss how special instances of universal bipartite matching
and shortest path problems can be tackled by applying greedy algorithms to associated
transversal matroids.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Quoting from the preface ofWelsh [27], matroids play a ‘‘unifying and central role . . . in combinatorial theory’’ as various
problems in combinatorial optimization can be modeled as matroid base problems and, therefore, be solved efficiently by
greedy algorithms. For a matroid M = (E, B) given by its ground set E and its collection of bases B, the classical problem is
theminimum matroid base problem (MMBP)

min
B∈B


e∈B

c(e), (1)

where costs c(e) ∈ R are assigned to the elements e ∈ E. A base B∗
∈ B, which is optimal to (1), is called aminimum-cost base.

The goal of this paper is to show that the greedy algorithm – which starts with the empty set and iteratively adds an
element of smallest possible cost while preserving independence of the set – is not only correct for matroid base problems
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with sum objective function, but also for many other objectives. Among them are, for instance, bottleneck, algebraic sum,
k-sum, k-max, cent-dian and trimmed-mean objective functions.

To this end, the remainder of the paper is organized as follows.
In Section 2, we introduce a unified framework to formulate matroid base problems with different types of objective

functions. Based on ordered weighted averaging operators and ordered median functions, these universal matroid base
problems minimize sum objectives, where multiplicative weights are associated with the ordered cost coefficients of the
elements of matroid bases. The solvability by greedy methods will heavily depend on the chosen weight coefficients.

In Section 3,we review the (standard) greedy algorithm. Its power is illustrated in Section 4,where universalmatroid base
problems with either non-negative or non-positive weight coefficients are solved. As opposed to this, we give an example
to demonstrate that the ‘‘pure’’ greedy strategy fails if there are strictly positive and strictly negative weights. Consequently,
the subsequent sections focus on problems with mixed weights.

We distinguish between single (Section 5) and multiple (Section 6) sign changes in the universal weight vectors as well
as between uniform and non-uniformmatroids. For uniformmatroids, we prove the result that amatroid base composed by
a minimum-cost and maximum-cost base is optimal for problems with one (−, +)-sign change. We also show that this is
only true for uniformmatroids, thus providing a new characterization of this matroid class. These results can be carried over
to problemswithmultiple sign changes, however, a solution in appropriately defined partitionmatroids becomes necessary.
For non-uniform matroids, we use deletion and contraction operations if the universal weight vector changes its sign only
once.

In Section 7, we consider two applications of transversal matroids, the universal bipartite matching problem and the
universal shortest path problem. Our results are summarized in Section 8.

For notations as well as basic definitions and results from matroid theory we refer to the book of Oxley [19]. The paper
is based on the thesis of Turner [23].

2. Universal matroid bases

Given a matroid M = (E, B), the focus is on matroid base problems with universal objective function generalizing the
well-known sum objective function and including several more as special cases.

The definition is based on two parts, the sorting of the cost coefficients of the elements of each base B ∈ B and their
multiplication with universal weights λ1, . . . , λr . The rank of matroid M = (E, B), which is equal to the cardinality of its
bases, is denoted by r .

Definition 1. Given costs c(e) ∈ R for all elements e ∈ E and a base B ∈ B, the sorted cost vector (with respect to c(e), e ∈ E,
and B) is

c≥(B) := (c(1)(B), . . . , c(r)(B))

where c(i)(B), i = 1, . . . , r , is the ith largest cost coefficient of base B.

Combining the sorted costs with a given set of weights, we get a universal objective function.

Definition 2. Given a matroidM = (E, B) of rank r with

– costs c(e) ∈ R for all e ∈ E and
– weights λi ∈ R for all i = 1, . . . , r ,

the universal minimum matroid base problem (Univ-MMBP) is

min
B∈B

fλ(B) :=

r
i=1

λi · c(i)(B). (2)

An optimal base B∗
∈ B is called a universal minimum-cost base.

Observe that, for a base B := {b1, . . . , br} ∈ B with c(b1) ≤ · · · ≤ c(br) or c(b1) ≥ · · · ≥ c(br), the objective function
in (2) can be reformulated as

fλ(B) :=

r
i=1

λi · c(br−i+1)

or

fλ(B) :=

r
i=1

λi · c(bi),

respectively.
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