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a b s t r a c t

A graph G is P5-reducible if every vertex of G lies in atmost one induced P5 (path on five ver-
tices). We show that a number of interesting results concerning P5-free graphs can be ex-
tended to P5-reducible graphs, namely: the existence of a dominating clique or P3, the fact
that k-colorability can be decided in polynomial time (for fixed k), and the fact that a max-
imum stable set can be found in polynomial time in the class of k-colorable P5-reducible
graphs (for fixed k).

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Given a family of graphs F , a graph G is said to be F -free if G has no induced subgraph that is isomorphic to a member
of F . When F contains only one graph F , we say that G is F-free. For integer n ≥ 1, let Pn denote the path on n vertices. A
graph G is called P5-reducible if every vertex of G lies on at most one induced P5. A graph G is called P5-sparse if every subset
of six vertices of G induces a subgraph that contains at most one induced P5. Clearly, every P5-free graph is P5-reducible,
and every P5-reducible graph is P5-sparse. Our purpose here is to extend to the class of P5-reducible graphs (possibly also to
P5-sparse graphs) some interesting results concerning P5-free graphs.

In a graph G, a subset D of V (G) is dominating if every vertex in V (G) \ D has a neighbor in D. Bacsó and Tuza [2],
and independently Cozzens and Kelleher [4], proved that every connected P5-free graph admits a dominating clique or a
dominating P3. We will show that this result still holds for the class of P5-reducible graphs (indeed for a superclass of that
class), and that a more general result holds for P5-sparse graphs.

For integer k, a k-coloring of the vertices of a graph G is amapping c : V → {1, . . . , k} such that any two adjacent vertices
u and v satisfy c(u) ≠ c(v). A graph G is called k-colorable if it admits a k-coloring. The chromatic number χ(G) of a graph G
is the smallest integer k such that G admits a k-coloring. Computing χ(G) is NP-hard; moreover, deciding if a graph admits
a k-coloring is NP-complete for every fixed k ≥ 3 [6], and even in some restricted classes of graphs (planar graphs [6], see
also [5]; triangle-free graphs [12], see also [15]; line-graphs [10]; etc.). It is NP-hard to compute the chromatic number of
a P5-graph [11]. In contrast, Hoàng et al. [9] proved that, for every fixed k, one can decide in polynomial time whether a
P5-free graph is k-colorable. We will show that this result can be extended to P5-reducible graphs.

In a graph G, a stable set (also called independent set) is any subset of pairwise non-adjacent vertices. The maximum
stable set problem (henceforth MSS) is the problem of finding a stable set of maximum size. In the weighted version of this
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problem, we are given a weight for each vertex of G, and the weight of any subset of vertices is defined as the total weight of
its elements. The maximum weighted stable set problem (MWSS) is then the problem of finding a stable set of maximum
weight. MSS (and consequently MWSS) is NP-hard in general, even under strong restrictions [6,17]. On the other hand, the
complexity ofMSS in the class of P5-free graphs is an open problem. This has attracted the attention ofmany researchers and
there are many results dealing with MSS in special subclasses of P5-free graphs; see [7] for a survey with many references
and [13] for a recent result. In [14], it was shown that for fixed k there exists a polynomial-time algorithm that solves MSS
(or the weighted version MWSS) in the class of k-colorable P5-free graphs. We will show here (see Theorem 6.2) that this
result can be extended to the class of k-colorable P5-reducible graphs.

For standard, undefined terms we refer to [3]. For any vertex v in a graph G, we let N(v) denote the set of neighbors of
v, and let M(v) = V (G) \ ({v} ∪ N(v)). Given a subset A of V (G) and a vertex v in V (G) \ A, we say that v is complete to
A if v is adjacent to every vertex of A. For any subset X of V (G), we let G[X] denote the subgraph of G induced by X . The
complementary graph of G is denoted by G.

2. Forbidden induced subgraphs

P5-sparse graphs A simple exhaustive search shows that there are twelve graphs F1, . . . , F12 on six vertices that contain at
least two induced P5’s. Each Fi has vertices a, b, c, d, e with edges ab, bc, cd, de (i.e., these five vertices induce a P5) plus a
sixth vertex u, where the neighborhood Ui of u in graph Fi is as follows: U1 = {a}; U2 = {b}; U3 = {a, c}; U4 = {b, d};
U5 = {a, e}; U6 = {a, c, e}; U7 = {a, b}; U8 = {a, d}; U9 = {a, b, c}; U10 = {b, c, d}; U11 = {a, b, e}; and U12 = {b, c, e}. Let
F s

= {F1, . . . , F12}. Thus a graph is P5-sparse if and only if it is F s-free, and testing if a graph on n vertices is P5-sparse can
be done in time O(n6) by checking the subgraphs induced by all subsets on six vertices.
P5-reducible graphs Any graph that is not P5-reducible contains two intersecting induced P5’s, and the union of these two
induced P5’s has at most nine vertices. It follows that the family F r of minimally non-P5-reducible graphs is a finite family
of graphs with at most nine (and at least six) vertices. A graph is P5-reducible if and only if it is F r -free. In consequence,
testing if a graph on n vertices is P5-reducible can be done in time O(n9) by checking all induced subgraphs on nine vertices.
Exhaustive search shows that F r contains 138 graphs. We will not show all these graphs here; only a few of them will be
of interest to us.

Let F13 be the graph with vertices x, ui, vi (i = 1, 2, 3) and edges xui, uivi (i = 1, 2, 3). Let F14 be the graph obtained
from F13 by adding one edge u1u2. Graphs F13 and F14 are P5-sparse but not P5-reducible; indeed they are minimally not
P5-reducible. Let F15 be the graph with eight vertices a1, . . . , a4, b1, . . . , b4 such that {a1, . . . , a4} induces a 4-cycle and for
each i ∈ {1, . . . , 4} the neighborhood of bi is {ai}. Let F16 be the graph obtained from F15 by adding one edge between two
non-adjacent vertices of its 4-cycle. Graphs F15 and F16 are not P5-sparse; they contain F4 and F10 respectively. Most of our
results on P5-reducible graphs will actually hold for the class of {F1, . . . , F16}-free graphs, oftentimes even for a superclass
of that class.

3. Bipartite graphs

It is of interest to know the structure of bipartite P5-sparse graphs and bipartite P5-reducible graphs as we will use these
results in the following sections.

The members of F s that are bipartite are F1, . . . , F6; so a bipartite graph is P5-sparse if and only if it is {F1, . . . , F6}-free.
This statement can be strengthened as follows. For integers k and ℓ with k ≥ 2 and ℓ ≥ 0, call (k, ℓ)-squid any bipartite
graph with vertex-set {x0, x1, . . . , xk} ∪ {y1, . . . , yk+ℓ} and edge-set {x0yi | i = 1, . . . , k+ ℓ} ∪ {xjyj | j = 1, . . . , k}. We call
squid any (k, ℓ)-squid for any k ≥ 2 and ℓ ≥ 0. Vertex x0 is the center of the squid. Note that a P5 is a (2, 0)-squid.

Theorem 3.1. For a bipartite graph G, the following properties are equivalent:
(i) G is P5-sparse;
(ii) G is {F1, . . . , F6}-free;
(iii) Each component of G is either a P5-free graph or a squid.

Proof. Wehave (i)⇒ (ii) because each of F1, . . . , F6 is a 6-vertex graph that contains at least two induced P5’s.Moreover, it is
a routinematter to check that every squid is P5-sparse, and consequentlywehave (iii)⇒ (i). Now let us prove the implication
(ii) ⇒ (iii). So consider any bipartite {F1, . . . , F6}-free graph G. We may assume that G is connected, for otherwise it suffices
to prove the statement for each component of G. If G is P5-free, then (iii) holds, so let us assume that G contains an induced
P5. Since a P5 is a squid, we can consider the largest squid S in G. Let S have vertex-set {x0, x1, . . . , xk} ∪ {y1, . . . , yk+ℓ} and
edge-set {x0yi | i = 1, . . . , k + ℓ} ∪ {xjyj | j = 1, . . . , k} for some k ≥ 2 and ℓ ≥ 0.

We claim that G = S. Suppose the contrary. Since G is connected, there is a vertex u of G \ S that has a neighbor in S. If
u is adjacent to yi with i ∈ {1, . . . , k}, say i = 1, then {u, x1, y1, x0, y2, x2} induces an F2 or F4 (depending on the adjacency
between u and y2), a contradiction. Thus u has no neighbor in {y1, . . . , yk}. If u is adjacent to xi with i ∈ {1, . . . , k}, say i = 1,
then {u, x1, y1, x0, y2, x2} induces an F1, F3, F5 or F6 (depending on the adjacency between u and {x0, x2}), a contradiction.
Thus u has no neighbor in {x1, . . . , xk}. If u is adjacent to x0, then V (S)∪{u} induces a (k, ℓ+1)-squid, which contradicts the
maximality of S. Thus u is not adjacent to x0. So itmust be that ℓ ≥ 1 and u has a neighbor yi in {yk+1, . . . , yk+ℓ}, say i = k+1.
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