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a b s t r a c t

LetG andH be graphswith the samenumber of vertices.We introduce a graphpuzzle (G,H)
in which G is a board graph and the set of vertices of H is the set of pebbles. A configuration
of H on G is defined as a bijection from the set of vertices of G to that of H . A move of
pebbles is defined as exchanging two pebbles which are adjacent on both G and H . For a
pair of configurations f and g , we say that g is equivalent to f if f can be transformed into
g by a sequence of finite moves. If G is a 4 × 4 grid graph and H is a star, then the puzzle
(G,H) corresponds to the well-known 15-puzzle. A puzzle (G,H) is called feasible if all the
configurations of H on G are mutually equivalent. In this paper, we study the feasibility of
the puzzle under various conditions. Among other results, for the case where one of the
two graphs G and H is a cycle, a necessary and sufficient condition for the feasibility of the
puzzle (G,H) is shown.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

A graph is finite and undirected with no multiple edge or loop. For a graph G, we denote the vertex set and the edge set
of G by V (G) and E(G), respectively. Let G and H be a pair of graphs with n vertices. Let us introduce a graph puzzle (G,H)
in which G is a board graph and the vertices of H are pebbles. H is called a pebble graph. A configuration of H on G is defined
as a bijection from V (G) to V (H). Given a configuration f , it is considered that a vertex x ∈ V (G) of the board G is occupied
by a pebble y = f (x) ∈ V (H). A move is defined as exchanging two pebbles y1 = f (x1) and y2 = f (x2), if x1x2 ∈ E(G) and
y1y2 ∈ E(H). Then, the resultant configuration g is a bijection from V (G) to V (H) such that g(x1) = y2, g(x2) = y1 and
g(x) = f (x) for any x ∈ V (G) \ {x1, x2}. Namely, a graph H represents the exchangeability of the pebbles.

Let us define the puzzle graph puz(G,H) such that V (puz(G,H)) is the set of all the configurations of H on G, denoted by
F (G,H), and E(puz(G,H)) = {(f , g) : f , g ∈ F (G,H), f can be transformed into g by some move}. Note that puz(G,H) is
isomorphic to puz(H,G) by the symmetry of the definition of a move.

We say that (G,H) is transitive if for any configuration f ∈ F (G,H) and for any vertex x ∈ V (G), a pebble f (x) can be
shifted to any other vertex ofG by a sequence of finitemoves. For a graphG, let c(G) be the number of connected components
of G. We say that (G,H) is feasible if c(puz(G,H)) = 1.

Now,we note the background of the pebble exchangemodel, which is studied in this paper. In robotics, the pebblemotion
model has been widely studied as a mathematical model, in which multiple objects can move individually on an underlying
workspace. In particular, in the case where the workspace is represented by a graph, a movable object can move from the
current vertex to one of its unoccupied neighbors in each step.
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Fig. 1. θ(1, 2, 2).

In this paper, we introduce the concept of the exchangeability between every pair of objects such that they can swap
their positions with each other if and only if they are adjacent to each other both in a board graph and in a pebble graph.
This model has a wide range of real world applications. Here we will show two such examples.

Example 1. Let G be a simple graph whose vertex set V (G) is the set of workplaces for robots. Each of the workplaces has a
unique electrical outlet and a single robot is working there. Twoworkplaces u and v in V (G) are adjacent with an edge e of G
if there exists a unique passageway from u to v. Each of the passageway is so narrow that at most two robots can pass at the
same time. Moreover, there exists a pair of robots such that they have no commonmethod of takingmutual communication
and hence the two robots may collide with each other on such a narrow passageway. Let H be a simple graph whose vertex
set V (H) is the set of robots working in the workplaces and two robots in V (H) are adjacent if the robots can take mutual
communication to avoid their collision. In this case, the rearrangements of the robots V (H) on the workplaces V (G) can be
described only by the pebble exchange model on the graph-pair (G,H).

Example 2. Let G be a simple graph whose vertex set is the set of chemical storerooms. In each chemical storeroom, we can
store only one type of chemical. Two chemical storerooms u and v in V (G) are adjacent with an edge e of G if there exists a
unique passageway from u to v. Again, each of the passageway is so narrow that at most two trucks of chemicals can pass
at the same time. There exist several dangerous pairs of chemicals such that, for each of the pairs, a near miss of the two
chemicals can cause serious chemical reaction with the possibility of explosion. Let H be a simple graph whose vertex set
V (H) is the set of chemicals stored in the chemical storerooms V (G) and two chemicals of V (H) are adjacent if the pair
is safe (i.e. no chemical reaction occurs). Now the investigation of rearrangements of the chemicals V (H) in the chemical
storerooms V (G) leads us again to treat the pebble exchange model on the graph-pair (G,H).

In the pebble exchange model, the number of pebbles is the same as the number of vertices of a board graph. On the
other hand, in an ordinary pebble motion model, the number of pebbles is less than the number of vertices of an underlying
graph, because there should be a set of unoccupied vertices as a free space. Hence, the twomodels may seem quite different
at first glance. However, in the pebble exchange model, if a pebble is adjacent to all other pebbles in a pebble graph, it can
freely move over the board graph, and so it is regarded to represent the absence of a pebble. Hence, the pebble exchange
model is, in a sense, a generalization of the pebble motion model. From this viewpoint, we will restate previously known
results on the pebble motion model in terms of our definition.

Suppose that G is a 4 × 4 grid graph and H is a star K1,15. As the center of K1,15 is considered as the absence of a pebble,
the puzzle (G,H) corresponds to the well-known 15-puzzle [1,6,10].

Wilson studied the problem for the case G is an arbitrary graph and H = K1,n−1 by using permutation groups associated
with the puzzle [11]. For positive integers a1, a2, a3, we define θ(a1, a2, a3)-graph such that (1) there exists a pair of vertices
u and v of degree 3, and (2) u and v are linked by three disjoint paths containing a1, a2 and a3 inner vertices, respectively.
For n ≥ 3, the puzzle (G, K1,n−1) is transitive if and only if G is 2-connected.

Theorem A (Wilson [11]). Let n ≥ 3. Let G be a graph with n vertices. Suppose that G is 2-connected and G is not a cycle. Let
c = c(puz(G, K1,n−1)).

(1) If G is a bipartite graph, then c = 2.
(2) If G is not a bipartite graph except θ(1, 2, 2), then c = 1.
(3) If G is θ(1, 2, 2), then c = 6. �

The only exceptional graph in Theorem A is θ(1, 2, 2). (See Fig. 1.) The puzzle (θ(1, 2, 2), K1,6) is related to many other
mathematical objects [4].

For two graphs G1 and G2, let G1 + G2 be the join of G1 and G2, where V (G1 + G2) = V (G1) ∪ V (G2) and E(G1 + G2) =

E(G1) ∪ E(G2) ∪ {x1x2 : x1 ∈ V (G1), x2 ∈ V (G2)}. Kornhauser et al. considered the puzzle having multiple unoccupied
positions [7]. In the following, let us show their results in terms of our setting. Let p ≥ 1 and q ≥ 2 be integers with
p + q = n. Corresponding to the puzzles with q unoccupied positions, Theorem A is generalized for the case H = Kp + Kq
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