Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Equitable total-coloring of subcubic graphs

Hao Gui^a, Weifan Wang^{a,*}, Yiqiao Wang^b, Zhao Zhang^a

^a Department of Mathematics, Zhejiang Normal University, Jinhua 321004, China
^b School of Management, Beijing University of Chinese Medicine, Beijing 100029, China

ARTICLE INFO

Article history: Received 23 October 2013 Received in revised form 14 November 2014 Accepted 17 November 2014 Available online 12 December 2014

Keywords: Subcubic graph Total-coloring Equitable coloring

1. Introduction

Throughout this paper we consider finite loopless multigraphs. Let V(G), E(G), $\Delta(G)$ (for short, Δ), and $\delta(G)$ denote the vertex set, the edge set, the maximum degree, and the minimum degree of a graph *G*, respectively. For a vertex $v \in V(G)$, let $N_G(v)$ denote the set of neighbors of v in *G*, and $d_G(v)$ denote the degree of v in *G*. A *k*-vertex is a vertex of degree *k*.

A graph *G* is *totally k-colorable* if the elements of $V(G) \cup E(G)$ can be colored by *k* colors such that any two adjacent or incident elements have different colors. The *total chromatic number*, denoted by $\chi''(G)$, of *G* is the least integer *k* such that *G* is totally *k*-colorable. A total-*k*-coloring of *G* is *equitable* if the number of the elements in any two classes differ by at most one. The *equitably total chromatic number* $\chi_e^w(G)$ of *G* is the least integer *k* such that *G* has an equitable total-*k*-coloring. By considering coloring only for V(G), we can define equitable *k*-coloring and equitable chromatic number $\chi_e(G)$.

In 1973, Meyer [9] introduced the notion of equitable (vertex) coloring of graphs and conjectured that the equitable chromatic number of a connected graph *G*, which is neither a complete graph nor an odd cycle, is at most Δ . Later Chen, Lih and Wu [2] put forward the following stronger conjecture:

Conjecture 1. Every connected graph G, different from K_m , C_{2m+1} and $K_{2m+1,2m+1}$ for $m \ge 1$, is equitably Δ -colorable.

Conjecture 1 was confirmed for trees [1], bipartite graphs [8], graphs with $\Delta = 3$ [2], graphs with $\Delta = 4$ [5], outerplanar graphs [7], planar graphs with $\Delta \ge 9$ [10], etc. The following celebrated result was first obtained by Hajnal and Szemerédi [4], whereas a shorter proof appeared in [6]:

Theorem 1. Every graph *G* is equitably *k*-colorable for all $k \ge \Delta + 1$.

In 1994, Fu [3] first introduced the concept of the equitable total-coloring of graphs (named as equalized total coloring). After some discussions, He presented the following challenging conjecture:

* Corresponding author. E-mail address: wwf@zjnu.cn (W. Wang).

http://dx.doi.org/10.1016/j.dam.2014.11.014 0166-218X/© 2014 Elsevier B.V. All rights reserved.

An equitable total-coloring of a graph *G* is a proper total-coloring such that the number of vertices and edges in any two color classes differ by at most one. Let $\chi''(G)$ and Δ denote the total chromatic number and the maximum degree of a graph *G*, respectively. In 1994, Fu conjectured that for any integer $k \ge \max{\chi''(G), \Delta + 2}$, *G* is equitably total-*k*-colorable. In this paper, we confirm this conjecture for the case $\Delta = 3$.

© 2014 Elsevier B.V. All rights reserved.

Conjecture 2. For each $k \ge \max{\chi''(G), \Delta + 2}$, *G* is equitably total-*k*-colorable.

In [3], the author confirmed Conjecture 2 for a few special cases such as trees, complete graphs, complete bipartite graphs, complete split graphs, and graphs *G* with $\Delta \ge |V(G)| - 2$. He also noticed that there exist infinitely many graphs *G* with $\chi''(G) = \Delta + 1$ which is not equitably total ($\Delta + 1$)-colorable.

Recall that a *cubic graph* is a 3-regular graph. A *subcubic graph* is a subgraph of a cubic graph. Wang [11] proved the following result:

Theorem 2. Every subcubic multigraph is equitably total-5-colorable.

In this paper, we continue to consider the equitable total-coloring of subcubic graphs. We will extend Theorem 2 to the statement that for any integer $k \ge 6$, every subcubic multigraph is equitably total-*k*-colorable. This result and Theorem 2 imply that Conjecture 2 is true for the class of subcubic graphs.

2. Results

Assume that *G* is a graph, which admits an equitable total-*k*-coloring ϕ using the color set $B = \{1, 2, ..., k\}$. Set $T(G) = V(G) \cup E(G)$. Then ϕ can be expressed as $(T_1, T_2, ..., T_k)$, where T_i denotes the *i*th color class of ϕ . Thus

$$\left\lfloor \frac{|T(G)|}{k} \right\rfloor \le |T_i| \le \left\lceil \frac{|T(G)|}{k} \right\rceil, \quad i = 1, 2, \dots, k.$$

Define

$$B_{l}(G) = \left\{ i \in B : |T_{i}| = \left\lfloor \frac{|T(G)|}{k} \right\rfloor \right\},\$$
$$B_{u}(G) = \left\{ i \in B : |T_{i}| = \left\lceil \frac{|T(G)|}{k} \right\rceil \right\}.$$

We call $B_l(G)$ and $B_u(G)$ the set of *lower* and *upper colors* of ϕ , respectively. If $|T_1| = |T_2| = \cdots = |T_k|$, then $B_l(G) = B_u(G) = B$. Otherwise, $B = B_l(G) \cup B_u(G)$, $B_l(G) \cap B_u(G) = \emptyset$, and $B_l(G)$, $B_u(G) \neq \emptyset$. As an easy observation, the following Lemmas 1 and 2 appeared in [11]:

Lemma 1. Suppose that G_1 and G_2 are two vertex-disjoint graphs. If G_1 and G_2 are equitably total-k-colorable, then so is $G_1 \cup G_2$.

Lemma 2. Every graph *G* with $\Delta \leq 2$ is equitably total-*k*-colorable for any $k \geq 4$.

A cycle C of a graph G is called *even* or *odd* if |V(C)| is even or odd. A *chord* of C is an edge joining two nonconsecutive vertices on C.

Lemma 3. Every cubic multigraph G, distinct from K_4 , contains an even cycle with at most one chord.

Proof. If *G* contains multi-edges, then the result holds trivially. So assume that *G* is a simple graph. We first show that *G* contains an even cycle. Let $P = v_1v_2 \cdots v_m$ be a longest path in *G*. Then v_2 is adjacent to v_1 , i.e., $v_2 \in N_G(v_1)$. By the choice of *P*, the other neighbors of v_1 , other than v_2 , must lie on the path *P*, say v_i , $v_j \in N_G(v_1)$ with 2 < i < j. If i or *j* is even, then an even cycle $v_1v_2 \cdots v_jv_1$ is found. Otherwise, both *i* and *j* are odd, it follows that $v_1v_iv_{i+1} \cdots v_jv_1$ is an even cycle.

Next, let $C = x_0x_1 \cdots x_{n-1}x_0$ be a shortest even cycle in *G*. We shall prove that *C* has at most one chord. For p < q, we use C[p, q] to denote the subset of vertices on *C* from x_p to x_q along clockwise direction. Namely, $C[p, q] = \{x_p, x_{p+1}, \ldots, x_{q-1}, x_q\}$. Moreover, let $C(p, q) = C[p, q] \setminus \{x_p, x_q\}$. If n = 4, then *C* has at most one chord, for otherwise $G = K_4$, contradicting the assumption on *G*. Hence $n \ge 6$. We assume further that *G* contains no 4-cycles.

Suppose that *C* has two distinct chords $e_1 = x_0x_i$ and $e_2 = x_jx_k$ with j < k, where indices are taken modulo *n*. If $\{0, i\} \cap \{j, k\} \neq \emptyset$, then it is easy to find a shorter even cycle than *C*, a contradiction. Thus assume that 0, i, j, k are mutually distinct. If e_1 and e_2 are two parallel chords of *C*, say $i < j < k \le n - 1$, then $x_0x_ix_{i+1} \cdots x_jx_kx_{k+1} \cdots x_{n-1}x_0$ is an shorter even cycle than *C*, which is a contradiction. So assume that e_1 and e_2 are two crossing chords of *C*, say $0 < j < i < k \le n - 1$. Since *G* contains no 4-cycles, it is easy to conclude that $C(0, j) \cup C(i, k) \ne \emptyset$ and $C(j, i) \cup C(k, 0) \ne \emptyset$. If both |C(0, j)| and |C(i, k)| are of same parity, then $C[0, j] \cup C[i, k]$ forms a shorter even cycle, which is impossible. The similar discussion works for |C(j, i)| and |C(k, 0)|. Otherwise, without loss of generality, assume that |C(0, j)| and |C(j, i)| are odd, and |C(i, k)| and |C(k, 0)| are even. Now, $x_0x_1 \cdots x_jx_kx_{k+1} \cdots x_{n-1}x_0$ is an even cycle whose length is shorter than that of *C*, a contradiction. This completes the proof of the lemma. \Box

Theorem 3. Every subcubic multigraph G is equitably total-6-colorable.

Download English Version:

https://daneshyari.com/en/article/421120

Download Persian Version:

https://daneshyari.com/article/421120

Daneshyari.com