Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Domination versus disjunctive domination in trees

Michael A. Henning, Sinclair A. Marcon*

Department of Mathematics, University of Johannesburg, Auckland Park, 2006, South Africa

ARTICLE INFO

ABSTRACT

Article history: Received 11 November 2013 Received in revised form 22 September 2014 Accepted 18 October 2014 Available online 15 November 2014

Keywords: Domination Disjunctive domination Trees A dominating set in a graph *G* is a set *S* of vertices of *G* such that every vertex not in *S* is adjacent to a vertex of *S*. The domination number, $\gamma(G)$, of *G* is the minimum cardinality of a dominating set of *G*. A set *S* of vertices in *G* is a disjunctive dominating set in *G* if every vertex not in *S* is adjacent to a vertex of *S* or has at least two vertices in *S* at distance 2 from it in *G*. The disjunctive domination number, $\gamma_2^d(G)$, of *G* is the minimum cardinality of a disjunctive dominating set in *G*. It is known that there exist graphs *G* that belong to the class of bipartite graphs or claw-free graphs or chordal graphs such that $\gamma(G) > C\gamma_2^d(G)$ for any given constant *C*. In this paper, we show that if *T* is a tree, then $\gamma(T) \le 2\gamma_2^d(T) - 1$, and we provide a constructive characterization of the trees achieving equality in this bound.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

A *dominating set* in a graph *G* is a set *S* of vertices of *G* such that every vertex not in *S* is adjacent to at least one vertex in *S*. The *domination number* of *G*, denoted by $\gamma(G)$, is the minimum cardinality of a dominating set of *G*. The literature on the subject of domination parameters in graphs up to the year 1997 has been surveyed and detailed in the two books [5,6].

Motivated by the concepts of distance domination and exponential domination (see, for example, [1,2,7]), Goddard, Henning and McPillan [4] introduced and studied the concept of disjunctive domination in a graph. A set *S* of vertices in a graph *G* is a *disjunctive dominating set*, abbreviated 2DD-set, in *G* if every vertex not in *S* is adjacent to a vertex of *S* or has at least two vertices in *S* at distance 2 from it in *G*. We say a vertex *v* in *G* is *disjunctively dominated*, abbreviated 2D-*dominated*, by the set *S*, if $v \in S$ or if *v* has a neighbor in *S* or there exist at least two vertices in *S* at distance 2 from *v* in *G*. The *disjunctive domination number* of *G*, denoted by $\gamma_2^d(G)$, is the minimum cardinality of a 2DD-set in *G*. Every dominating set is a 2DD-set, implying the following observation.

Observation 1 ([4]). For every graph *G*, we have $\gamma_2^d(G) \leq \gamma(G)$.

As observed in [8], the ratio $\gamma(G)/\gamma_2^d(G)$ can be made arbitrarily large, even when restricted to the class of bipartite graphs or claw-free graphs or chordal graphs.

Observation 2 ([8]). There exist graphs *G* that belong to the class of bipartite graphs or claw-free graphs or chordal graphs such that $\gamma(G) > C\gamma_2^d(G)$ for any given constant *C*.

Unlike the somewhat negative result of Observation 2, we show that if *G* belongs to the class of trees, then the ratio $\gamma(G)/\gamma_2^d(G)$ is bounded. More precisely, we prove the following result.

Theorem 3. For every tree *T*, we have $\gamma(T)/\gamma_2^d(T) < 2$ and this bound is asymptotically tight.

http://dx.doi.org/10.1016/j.dam.2014.10.036 0166-218X/© 2014 Elsevier B.V. All rights reserved.

^{*} Corresponding author. E-mail addresses: mahenning@uj.ac.za (M.A. Henning), sinclair.marcon@gmail.com (S.A. Marcon).

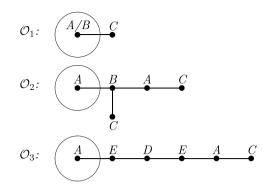


Fig. 1. The three operations \mathcal{O}_1 , \mathcal{O}_2 and \mathcal{O}_3 .

1.1. Terminology and notation

For notation and graph theory terminology not defined herein, we refer the reader to [9]. Let G = (V, E) be a graph with vertex set V = V(G) of order n(G) = |V| and edge set E = E(G) of size m(G) = |E|, and let v be a vertex in V. We denote the *degree* of v in G by $d_G(v)$. A *path* on n vertices is denoted by P_n . For two vertices u and v in a connected graph G, the *distance* $d_G(u, v)$ between u and v is the length of a shortest (u, v)-path in G. The maximum distance among all pairs of vertices of G is the *diameter* of G, which is denoted by diam(G). A graph is *nontrivial* if $n(G) \ge 2$.

A rooted tree *T* distinguishes one vertex *r* called the *root*. For each vertex $v \neq r$ of *T*, the *parent* of *v* is the neighbor of *v* on the unique (r, v)-path, while a *child* of *v* is any other neighbor of *v*. A *descendant* of *v* is a vertex $u \neq v$ such that the unique (r, u)-path contains *v*. Thus, every child of *v* is a descendant of *v*. We let D(v) denote the set of descendants of *v*, and we define $D[v] = D(v) \cup \{v\}$. The *maximal subtree* at *v* is the subtree of *T* induced by D[v], and is denoted by T_v . A *leaf* of *T* is a vertex of degree 1, while a *support vertex* of *T* is a vertex adjacent to a leaf. A *double star* is a tree with exactly two vertices that are not leaves.

The open neighborhood of a vertex v is the set $N_G(v) = \{u \in V | uv \in E\}$ and the closed neighborhood of v is $N_G[v] = \{v\} \cup N_G(v)$. If the graph G is clear from the context, we simply write n, m, d(v), d(u, v), N(v), and N[v] rather than $n(G), m(G), d_G(v), d_G(u, v), N_G(v)$, and $N_G[v]$, respectively.

By a *weak partition* of a set we mean a partition of the set in which some of the subsets may be empty. For our purposes we define a *labeling* of a tree *T* as a weak partition $S = (S_A, S_B, S_C, S_D, S_E)$ of V(T). We will refer to the pair (T, S) as a *labeled* tree. The *label* or *status* of a vertex v, denoted sta(v), is the letter $x \in \{A, B, C, D, E\}$ such that $v \in S_x$.

1.2. The family T

Let \mathcal{T} be the minimum family of labeled trees that: (i) contains (K_2, S_0^*) where S_0^* is the labeling that assigns to one vertex status A and to the other vertex status C; and (ii) is closed under the three operations \mathcal{O}_1 , \mathcal{O}_2 and \mathcal{O}_3 that are listed below, which extend the tree T' to a tree T by attaching a tree to the vertex $v \in V(T')$, called the *attacher* of T'. We call the edge that joins v to the vertex of the attached tree, the *attached edge*.

- **Operation** \mathcal{O}_1 . Let v be a vertex with sta $(v) \in \{A, B\}$. Add a vertex u_1 and the edge vu_1 . Let sta $(u_1) = C$.
- **Operation** \mathcal{O}_2 . Let v be a vertex with $\operatorname{sta}(v) = A$. Add a path $u_1u_2u_3u_4$ and the edge vu_2 . Let $\operatorname{sta}(u_1) = \operatorname{sta}(u_4) = C$ and $\operatorname{sta}(u_2) = B$, $\operatorname{sta}(u_3) = A$.
- **Operation** \mathcal{O}_3 . Let v be a vertex with $\operatorname{sta}(v) = A$. Add a path $u_1u_2u_3u_4u_5$ and the edge vu_1 . Let $\operatorname{sta}(u_1) = \operatorname{sta}(u_3) = E$, $\operatorname{sta}(u_2) = D$, $\operatorname{sta}(u_4) = A$, and $\operatorname{sta}(u_5) = C$.

The three operations \mathcal{O}_1 , \mathcal{O}_2 and \mathcal{O}_3 are illustrated in Fig. 1.

2. Main result

Our aim in this paper is twofold: Firstly to present a tight upper bound for the domination number of a tree in terms of its disjunctive domination number, and secondly to provide a constructive characterization of the trees achieving equality in this bound.

The key to our constructive characterization is to find a labeling of the vertices that indicates the role each vertex plays in the sets associated with both parameters. This idea of labeling the vertices is introduced in [3], where trees with equal domination and independent domination numbers as well as trees with equal domination and total domination numbers are characterized.

We shall prove the following result that establishes a tight upper bound for the domination number of a tree in terms of its disjunctive domination number, and provides a constructive characterization of the trees achieving equality in this upper bound. We remark that Theorem 3 is an immediate consequence of Theorem 4.

Download English Version:

https://daneshyari.com/en/article/421121

Download Persian Version:

https://daneshyari.com/article/421121

Daneshyari.com