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a b s t r a c t

A graph whose vertex set can be partitioned into the disjoint union of an independent set
and a clique is called split graph. A complete split graph is one that all vertices of indepen-
dent set are adjacent with the vertices of the clique. In this paper, all split graphs with at
most four distinct eigenvalues are characterized.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In this section, we introduce some basic notation and terminology used throughout the paper. All graphs considered are
connected simple. Our notation is standard and mainly taken from [2,5,3].

For any two nonadjacent vertices x and y in graph G, we use G+ xy to denote the graph obtained from adding a new edge
xy to graph G. Similarly, for e = xy in E(G), G−xy represents a new graph obtained from graph G by deleting the edge e = xy.

The join G = G1 + G2 of graphs G1 and G2 with disjoint vertex sets V1 and V2 and edge sets E1 and E2 is the graph union
G1 ∪ G2 together with all the edges joining V1 and V2.

A stable set in a graph is a set of vertices no two of which are adjacent. A clique in a graph is a set of mutually adjacent
vertices. The maximum size of a stable set is called the independent number and we denote it by α(G). Similarly, the clique
number of G is a clique with the maximum size and we denote it by ω(G). Clearly, a set of vertices S is a clique of a simple
graph G if and only if it is a stable set of its complement G. In particular, α(G) = ω(Ḡ).

We denote by Kn, Cn and Sn, the complete graph, the cycle graph and the star graph on n vertices, respectively. A n-sun
graph is a graph on 2n vertices consisting of a central complete graph Kn with an outer ring of n vertices, each of which is
joined to both endpoints of the closest outer edge of the central core.

The split graph G = S(r, t) is a graph whose vertex set is V = S ∪̇Q where S,Q denote to the stable set and clique of
G, respectively and |S| = r, |Q | = t . It was shown in [9] that G is split if and only if it does not have an induced subgraph
isomorphic to one of the three graphs C4, C5 or 2K2. One can prove that the complement and every induced subgraph of a
split graph is split. A complete split graph is one whose all vertices of stable set are adjacent with the vertices of clique of G.
Suppose S and Q be respectively, the set of vertices of stable set and clique of G with r and t vertices. If the split graph G is
complete, then G = K̄r + Kt . We denote a complete split graph by CS(r, t), see [4,7].

In [6], the authors characterized all integral signless Laplacian of complete split graphs and in the present work, we de-
termine the spectrum of all complete split graphs. A spectral characterization of families of split graphs, involving its index
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and entries of the principal eigenvectors was given in [1]. We encourage the reader to see the recent paper of Andelić and
Cardoso [1] for current and complete descriptions as well as [8].

Let A denote the adjacency matrix of graph G, then the characteristic polynomial χ(G, x) of graph G is defined as
χ(G, x) = |A − xI|.

The roots of the characteristic polynomial are the eigenvalues of graph G and form the spectrum of G. In the next section,
we classify all split graphs with maximum degree ∆ ≤ 4 and then we compute the full spectrum of complete split graph,
generally. Here, we are interested to characterize all split graphs with at most four eigenvalues.

Theorem 1. Every complete split graph CS(r, t) has four eigenvalues. Further, its spectrum is

[−1]t−1, [0]r−1, [λ]

1, [µ]
1

,

where

λ, µ =
t − 1 ±


(1 − t)2 + 4 tr
2

.

Proof. It is easy to see that, the adjacency matrix of CS(r, t) is

A(CS(r, t)) =


0r×r Jr×t
Jt×r (J − I)t×t


.

Hence, the characteristic polynomial of CS(r, t) is

χ(CS(r, t)) = |λIt+r − A| = λr
|λIt − (J − I)t×t −

1
λ
Jt×r × Jr×t |

= λr−t
|λ2It − λ(J − I)t − rJt | = λr−t

|(λ2
+ λ)It − (λ + r)Jt |

= λr−t(λ + r)tχ λ2+λ
λ+r

(Jt)

= λr−t(λ + r)t


λ2
+ λ

λ + r

t−1 
λ2

+ λ

λ + r
− t


= λr−tλt−1(λ + r)t


λ + 1
λ + r

t−1 
λ2

+ λ − tλ − tr
λ + r


= λr−1(λ + 1)t−1(λ2

+ (1 − t)λ − tr).

This completes the proof.

2. Results and discussion

In this section, we classify all split graphs with at most four distinct eigenvalues. First, we introduce an upper bound for
the number of vertices of a split graph with respect to its maximum degree ∆. To do this, assume that G is a split graph with
∆ ≤ 4 and Q denotes to the maximum clique of G. We claim that |V (G)| ≤ 9. It is easy to prove that the maximum number
of vertices of Q is five. If Q has five vertices, then G ∼= K5 and so G has only five vertices. If Q has four vertices, since G is
connected, according to pigeonhole principle the maximum number of vertices of its stable set is at most four and hence in
this case G has exactly eight vertices. Let Q has three vertices. The condition ∆ ≤ 4 leads us to verify that the maximum
number of vertices of stable set is six and all of them are pendant, thus in this case G has nine vertices. Finally, if Q is the
complete graph K2, then the number of vertices of any stable set is at most six and so G has eight vertices. In general, by
continuing our method, we have the following result.

Proposition 1. If G is a split graph with maximum degree ∆, then

|V (G)| ≤

(∆ − 2)2/4


+ 2∆.

Proof. It is easy to see that |Q | ≤ ∆ + 1. If |Q | = ∆ + 1, then |S| = φ and so G is a complete graph on ∆ + 1 vertices. If
|Q | = ∆ then for every vertex v in Q , degQ (v) = ∆ − 1 and so G has at most |Q | + |Q | = 2∆ vertices. By continuing this
method, we can take |Q | = ∆ − i and hence degQ (v) = ∆ − i − 1. This implies that the maximum number of vertices is

|Q | + (i + 1)|Q | = (i + 2)(∆ − i).

Consider the real function f (x) = x∆ − x2 + 2∆ − 2xwhere 0 ≤ x ≤ ∆ − 2. It is clear that

f ′(x) = −2x + ∆ − 2 = 0 ⇔ x = (∆ − 2)/2.

On the other hand, f (0) = f (∆ − 2) = 2∆ and f ((∆ − 2)/2) = (∆ − 2)2/4 + 2∆ ≥ 2∆. Hence, the maximum value of
this function holds at point (∆ − 2)/2 and so G has at most f ((∆ − 2)/2) = [(∆ − 2)2/4] + 2∆ vertices. This completes
the proof.
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