Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Note (3, 1)-Choosability of toroidal graphs with some forbidden short cycles[☆]

Yubo Jing, Yingqian Wang*

College of Mathematics, Physics and Information Engineering, Zhejiang Normal University, Jinhua, 321004, China

ARTICLE INFO

Article history: Received 13 January 2014 Received in revised form 4 September 2014 Accepted 18 October 2014 Available online 13 November 2014

Keywords: Toroidal graph Cycle Improper choosability

1. Introduction

ABSTRACT

Lih et al. showed that every planar graph without 4-cycles or *i*-cycles for some $i \in \{5, 6, 7\}$ is (3, 1)-choosable. Dong and Xu showed that every toroidal graph without 4-cycles or 6-cycles is (3, 1)-choosable. In this paper, we show that every toroidal graph without 4-cycles or *i*-cycles for some $i \in \{5, 7\}$ is also (3, 1)-choosable.

© 2014 Elsevier B.V. All rights reserved.

All graphs considered in this paper are finite, simple and undirected. A *toroidal* graph *G* is a graph drawn on the torus without crossing edges. We use V(G), E(G), F(G) and $\delta(G)$ to denote the vertex set, edge set, face set and minimum degree of *G*, respectively.

A list assignment L of G assigns a list L(v) of available colors for every $v \in V(G)$. A k-list assignment satisfies that $|L(v)| \ge k$ for any vertex v. An L-coloring ϕ of a graph G is a coloring of G such that $\phi(v) \in L(v)$ for every $v \in V(G)$, and $\phi(x) \neq \phi(y)$ whenever $xy \in E(G)$. G is L-colorable if it admits an L-coloring. Call G k-choosable if it is L-colorable for every k-list assignment L. Let d be a non-negative integer. An (L, d)-coloring is a mapping ϕ that assigns a color $\phi(v) \in L(v)$ to each vertex $v \in V(G)$ such that at most d neighbors of v receive color $\phi(v)$. A graph G is called (k, d)-choosable if it admits an (L, d)-coloring for every list assignment L with $|L(v)| \ge k$ for all $v \in V(G)$. Clearly, the (k, d)-choosability generalizes the classical k-choosability.

Eaton and Hull [4] and Škrekovski [6] independently showed that every planar graph is (3, 2)-choosable. Škrekovski [7] showed that every planar graph without 3-cycles is (3, 1)-choosable. Later, Lih et al. [5] showed that every planar graph without 4-cycles or *i*-cycles for some $i \in \{5, 6, 7\}$ is (3, 1)-choosable. Dong and Xu [2] extended this result for $i \in \{8, 9\}$. Recently Wang and Xu [8] improved these results by proving that every planar graph without 4-cycles is (3, 1)-choosable. Very recently, Chen and Raspaud [1] further improved this result by proving that every planar graph without adjacent 4^- -cycles is (3, 1)-choosable.

As for improper choosability of toroidal graphs, Xu and Zhang [10] showed that every toroidal graph without adjacent triangles is (4, 1)-choosable. Xu and Yu [9] proved that every toroidal graph with neither adjacent triangles nor 6-cycles is (3, 1)-choosable if it further has no *l*-cycles for some $l \in \{5, 7\}$. Dong and Xu [3] showed that every toroidal graphs with neither 4-cycles nor 6-cycles is (3, 1)-choosable. In this paper, we show the following result.

http://dx.doi.org/10.1016/j.dam.2014.10.030 0166-218X/© 2014 Elsevier B.V. All rights reserved.

Supported by NSFC No. 11271335.

^{*} Corresponding author.

E-mail address: yqwang@zjnu.cn (Y. Wang).

Theorem 1. Every toroidal graph G with neither 4-cycles nor k-cycles for some $k \in \{5, 7\}$ is (3, 1)-choosable.

The rest of this section is devoted to some definitions. For $v \in V(G)$, let d(v) and N(v) denote the degree and the neighborhood of $v \in G$, respectively. A vertex of degree k, (resp. at least k, at most k) will be called a k-vertex (resp. k^+ -vertex, k^- -vertex). A similar notation will be used for cycles and faces, too. In this paper, a triangle is synonymous with a 3-face. A vertex or an edge is called *triangular* if it is incident with a triangle. For $f \in F(G)$, we use b(f) to denote the boundary walk of f and write $f = [v_1v_2\cdots v_n]$ if v_1, v_2, \ldots, v_k are the boundary vertices of f in a cyclic order, and say that f is a $(d(v_1), d(v_2), \ldots, d(v_k))$ -face. For any $v \in V(G)$, we let $v_1, v_2, \ldots, v_{d(v)}$ denote the neighbors of v in a cyclic order. Let f_i be the face with vv_i and vv_{i+1} as two boundary edges for $i = 1, 2, \ldots, d(v)$, where indices are taken modulo d(v). Let $vv' \in E(G)$. If vv' is non-triangular, then v' is called an *isolated* neighbor of v. If v' is an isolated 3-neighbor of v and v' is triangular, then v' is called a *pendent* neighbor of v. Finally, two cycles or two faces are *adjacent* if they have at least one edge in common; *normally adjacent* if their intersection consists of exactly one edge.

2. Reducibility

Suppose Theorem 1 is false. Let G = (V, E, F) be a counterexample to Theorem 1 with $\sigma(G) = |V| + |E|$ as small as possible. Clearly *G* is connected. Below are some known structural properties of *G*.

Lemma 1. (1) $\delta(G) \ge 3$ [5].

(2) G has no adjacent 3-vertices [5].

(3) G has no $(4^-, 4^-, 4^-)$ -face [1].

(4) A 4-vertex has at most two 3-neighbors [1].

According to Lemma 1(4), call a 4-vertex *bad* if it has exactly two isolated 3-neighbors; good otherwise. For short, by a 4^{b} -vertex (4^{g} -vertex, resp.) we mean a bad (good, resp.) 4-vertex.

Call a vertex v *B*-vertex if v is a 3-vertex or a 4^{*b*}-vertex.

Let $\emptyset \neq A \subset V(G)$ and G' = G - A. By the minimality, G' admits an (3, 1)-coloring ϕ using color from L(x) for every $x \in V(G')$. For convenience, we use the notation $\phi(a)$ to denote the color assigned to $a \in A$ in the process of extending ϕ from G' to G. Note that $\phi(A') = \{\phi(a) | a \in A' \subseteq A\}$ may be a multi-set of colors.

Lemma 2. *G* has no adjacent 4^b-vertices.

Proof. Suppose to the contrary that *G* has two adjacent 4^b -vertices, say v_1 and v_2 . Let v_i^j , j = 1, 2, 3, be the remaining three neighbors of v_i , where v_i^1 and v_i^2 are the two isolated 3-neighbors of v_i . Note that neither v_1^3 nor v_2^3 is a 3-vertex, and v_1^3 and v_2^3 may be identical. Let *G'* be the graph obtained by deleting v_1 , v_2 and all their isolated 3-neighbors from *G*. By the minimality of *G*, *G'* admits a (3, 1)-coloring ϕ (using color from L(x) for every $x \in V(G')$). First we properly color v_i^i for i, j = 1, 2. If $\phi(v_1^1) = \phi(v_1^2)$, then we properly color v_1 , then color v_2 with a color from $L(v_2) \setminus \{\phi(v_2^3)\}$, which appears in $\{\phi(v_1), \phi(v_2^1), \phi(v_2^2)\}$ at most once. The same argument works if $\phi(v_2^1) = \phi(v_2^2)$. We may assume that, for i = 1, 2, $\phi(v_i^1) \neq \phi(v_i^2)$. Now we first color v_1 with a color from $L(v_1) \setminus \{\phi(v_1^3)\}$, then color v_2 with a color from $L(v_2) \setminus \{\phi(v_1), \phi(v_2^2)\}$, obtaining a (3, 1)-coloring of *G* with respect to *L*, a contradiction. \Box

By Lemmas 1 and 2, it is easy to deduce the following lemma.

Lemma 3. If f is a 3-face in G, then f is a $(B, 4^g, 5^+)$ -, $(B, 5^+, 5^+)$ -, $(4^g, 4^g, 5^+)$ -, $(4^g, 5^+, 5^+)$ -, or $(5^+, 5^+, 5^+)$ -face.

Lemma 4. A 5-vertex in G has at most four B-neighbors, in particular, four 3-neighbors.

Proof. Suppose to the contrary that all neighbors of v are B-vertices. Let v_i , i = 1, 2, 3, 4, 5, be the neighbors of v. We may assume that all neighbors of v are 4^b -vertices, since if some neighbors of v are 3-vertices, then the proof is similar (even easier). Let v'_i, v''_i, v'''_i be the three neighbors of v_i other than v, where v'_i and v''_i are the two 3-vertices defining v_i to be a 4^b -vertex. Deleting $v, v_i, i = 1, 2, 3, 4, 5$, together with their 3-neighbors from G, we obtain a smaller graph G'. By the minimality of G, G' admits a (3, 1)-coloring ϕ . To extend ϕ from G' to G, we first properly color v'_i, v''_i , for i = 1, 2, 3, 4, 5, then color v_i with a color from $L(v_i) \setminus \{\phi(v''_i)\}$, which appears in $\{\phi(v'_i), \phi(v''_i)\}$ at most once. Now we color v with a color from L(v), which appears of v at most once. This gives a (3, 1)-coloring of G unless the color on v, say α , is used on v_i and one 3-neighbor of v_i for some $i \in \{1, 2, 3, 4, 5\}$. In that case, we can recolor v_i with a color from $L(v_i) \setminus \{\alpha, \phi(v''_i)\}$, giving a (3, 1)-coloring of G with respect to L, a contradiction. \Box

Lemma 5 ([8]). No 5-vertex in G is incident with

(1) Two (B, 4, 5)-faces.

- (2) One (B, 4, 5)-face, and has two isolated 3-neighbors.
- (3) Two $(4^-, 4^-, 5)$ -faces, and has one isolated 3-neighbor.
- (4) One (5, B, 4)-face and one $(5, B, 4^+)$ -face, and has one isolated 3-neighbor.

Lemma 6 ([8]). No 6-vertex in G is incident with one $(6, B, 4^g)$ -face and two $(6, 4^-, 4^-)$ -faces.

Download English Version:

https://daneshyari.com/en/article/421131

Download Persian Version:

https://daneshyari.com/article/421131

Daneshyari.com