Note

(3,1)-Choosability of toroidal graphs with some forbidden short cycles ${ }^{\text {T }}$

Yubo Jing, Yingqian Wang*
College of Mathematics, Physics and Information Engineering, Zhejiang Normal University, Jinhua, 321004, China

ARTICLE INFO

Article history:

Received 13 January 2014
Received in revised form 4 September 2014
Accepted 18 October 2014
Available online 13 November 2014

Abstract

Lih et al. showed that every planar graph without 4-cycles or i-cycles for some $i \in\{5,6,7\}$ is $(3,1)$-choosable. Dong and Xu showed that every toroidal graph without 4 -cycles or 6 -cycles is $(3,1)$-choosable. In this paper, we show that every toroidal graph without 4 -cycles or i-cycles for some $i \in\{5,7\}$ is also (3, 1)-choosable.

© 2014 Elsevier B.V. All rights reserved.

Keywords:

Toroidal graph
Cycle
Improper choosability

1. Introduction

All graphs considered in this paper are finite, simple and undirected. A toroidal graph G is a graph drawn on the torus without crossing edges. We use $V(G), E(G), F(G)$ and $\delta(G)$ to denote the vertex set, edge set, face set and minimum degree of G, respectively.

A list assignment L of G assigns a list $L(v)$ of available colors for every $v \in V(G)$. A k-list assignment satisfies that $|L(v)| \geq k$ for any vertex v. An L-coloring ϕ of a graph G is a coloring of G such that $\phi(v) \in L(v)$ for every $v \in V(G)$, and $\phi(x) \neq \phi(y)$ whenever $x y \in E(G)$. G is L-colorable if it admits an L-coloring. Call $G k$-choosable if it is L-colorable for every k-list assignment L. Let d be a non-negative integer. An (L, d)-coloring is a mapping ϕ that assigns a color $\phi(v) \in L(v)$ to each vertex $v \in V(G)$ such that at most d neighbors of v receive color $\phi(v)$. A graph G is called (k, d)-choosable if it admits an (L, d)-coloring for every list assignment L with $|L(v)| \geq k$ for all $v \in V(G)$. Clearly, the (k, d)-choosability generalizes the classical k-choosability.

Eaton and Hull [4] and Škrekovski [6] independently showed that every planar graph is (3, 2)-choosable. Škrekovski [7] showed that every planar graph without 3-cycles is $(3,1)$-choosable. Later, Lih et al. [5] showed that every planar graph without 4-cycles or i-cycles for some $i \in\{5,6,7\}$ is $(3,1)$-choosable. Dong and $\mathrm{Xu}[2]$ extended this result for $i \in\{8,9\}$. Recently Wang and Xu [8] improved these results by proving that every planar graph without 4-cycles is $(3,1)$-choosable. Very recently, Chen and Raspaud [1] further improved this result by proving that every planar graph without adjacent 4^{-}-cycles is $(3,1)$-choosable.

As for improper choosability of toroidal graphs, Xu and Zhang [10] showed that every toroidal graph without adjacent triangles is $(4,1)$-choosable. Xu and Yu [9] proved that every toroidal graph with neither adjacent triangles nor 6-cycles is $(3,1)$-choosable if it further has no l-cycles for some $l \in\{5,7\}$. Dong and $\mathrm{Xu}[3]$ showed that every toroidal graphs with neither 4 -cycles nor 6 -cycles is $(3,1)$-choosable. In this paper, we show the following result.

[^0]Theorem 1. Every toroidal graph G with neither 4-cycles nor k-cycles for some $k \in\{5,7\}$ is $(3,1)$-choosable.
The rest of this section is devoted to some definitions. For $v \in V(G)$, let $d(v)$ and $N(v)$ denote the degree and the neighborhood of $v \in G$, respectively. A vertex of degree k, (resp. at least k, at most k) will be called a k-vertex (resp. k^{+}-vertex, k^{-}-vertex). A similar notation will be used for cycles and faces, too. In this paper, a triangle is synonymous with a 3 -face. A vertex or an edge is called triangular if it is incident with a triangle. For $f \in F(G)$, we use $b(f)$ to denote the boundary walk of f and write $f=\left[v_{1} v_{2} \cdots v_{n}\right]$ if $v_{1}, v_{2}, \ldots, v_{k}$ are the boundary vertices of f in a cyclic order, and say that f is a $\left(d\left(v_{1}\right), d\left(v_{2}\right), \ldots, d\left(v_{k}\right)\right)$-face. For any $v \in V(G)$, we let $v_{1}, v_{2}, \ldots, v_{d(v)}$ denote the neighbors of v in a cyclic order. Let f_{i} be the face with $v v_{i}$ and $v v_{i+1}$ as two boundary edges for $i=1,2, \ldots, d(v)$, where indices are taken modulo $d(v)$. Let $v v^{\prime} \in E(G)$. If $v v^{\prime}$ is non-triangular, then v^{\prime} is called an isolated neighbor of v. If v^{\prime} is an isolated 3-neighbor of v and v^{\prime} is triangular, then v^{\prime} is called a pendent neighbor of v. Finally, two cycles or two faces are adjacent if they have at least one edge in common; normally adjacent if their intersection consists of exactly one edge.

2. Reducibility

Suppose Theorem 1 is false. Let $G=(V, E, F)$ be a counterexample to Theorem 1 with $\sigma(G)=|V|+|E|$ as small as possible. Clearly G is connected. Below are some known structural properties of G.

Lemma 1. (1) $\delta(G) \geq 3$ [5].
(2) G has no adjacent 3-vertices [5].
(3) G has no ($4^{-}, 4^{-}, 4^{-}$)-face [1].
(4) A 4-vertex has at most two 3-neighbors [1].

According to Lemma 1(4), call a 4-vertex bad if it has exactly two isolated 3-neighbors; good otherwise. For short, by a 4^{b}-vertex (4^{g}-vertex, resp.) we mean a bad (good, resp.) 4-vertex.

Call a vertex $v B$-vertex if v is a 3-vertex or a 4^{b}-vertex.
Let $\emptyset \neq A \subset V(G)$ and $G^{\prime}=G-A$. By the minimality, G^{\prime} admits an $(3,1)$-coloring ϕ using color from $L(x)$ for every $x \in V\left(G^{\prime}\right)$. For convenience, we use the notation $\phi(a)$ to denote the color assigned to $a \in A$ in the process of extending ϕ from G^{\prime} to G. Note that $\phi\left(A^{\prime}\right)=\left\{\phi(a) \mid a \in A^{\prime} \subseteq A\right\}$ may be a multi-set of colors.

Lemma 2. G has no adjacent 4^{b}-vertices.
Proof. Suppose to the contrary that G has two adjacent 4^{b}-vertices, say v_{1} and v_{2}. Let $v_{i}^{j}, j=1,2,3$, be the remaining three neighbors of v_{i}, where v_{i}^{1} and v_{i}^{2} are the two isolated 3-neighbors of v_{i}. Note that neither v_{1}^{3} nor v_{2}^{3} is a 3-vertex, and v_{1}^{3} and v_{2}^{3} may be identical. Let G^{\prime} be the graph obtained by deleting v_{1}, v_{2} and all their isolated 3-neighbors from G. By the minimality of G, G^{\prime} admits a $(3,1)$-coloring ϕ (using color from $L(x)$ for every $x \in V\left(G^{\prime}\right)$). First we properly color v_{i}^{j} for $i, j=1$, 2. If $\phi\left(v_{1}^{1}\right)=\phi\left(v_{1}^{2}\right)$, then we properly color v_{1}, then color v_{2} with a color from $L\left(v_{2}\right) \backslash\left\{\phi\left(v_{2}^{3}\right)\right\}$, which appears in $\left\{\phi\left(v_{1}\right), \phi\left(v_{2}^{1}\right), \phi\left(v_{2}^{2}\right)\right\}$ at most once. The same argument works if $\phi\left(v_{2}^{1}\right)=\phi\left(v_{2}^{2}\right)$. We may assume that, for $i=1$, 2 , $\phi\left(v_{i}^{1}\right) \neq \phi\left(v_{i}^{2}\right)$. Now we first color v_{1} with a color from $L\left(v_{1}\right) \backslash\left\{\phi\left(v_{1}^{3}\right)\right\}$, then color v_{2} with a color from $L\left(v_{2}\right) \backslash\left\{\phi\left(v_{1}\right), \phi\left(v_{2}^{3}\right)\right\}$, obtaining a $(3,1)$-coloring of G with respect to L, a contradiction.

By Lemmas 1 and 2, it is easy to deduce the following lemma.
Lemma 3. If f is a 3-face in G, then f is a $\left(B, 4^{g}, 5^{+}\right)-$, $\left(B, 5^{+}, 5^{+}\right)-,\left(4^{g}, 4^{g}, 5^{+}\right)-,\left(4^{g}, 5^{+}, 5^{+}\right)-$, or $\left(5^{+}, 5^{+}, 5^{+}\right)$-face.
Lemma 4. A 5-vertex in G has at most four B-neighbors, in particular, four 3-neighbors.
Proof. Suppose to the contrary that all neighbors of v are B-vertices. Let $v_{i}, i=1,2,3,4,5$, be the neighbors of v. We may assume that all neighbors of v are 4^{b}-vertices, since if some neighbors of v are 3 -vertices, then the proof is similar (even easier). Let $v_{i}^{\prime}, v_{i}^{\prime \prime}, v_{i}^{\prime \prime \prime}$ be the three neighbors of v_{i} other than v, where v_{i}^{\prime} and $v_{i}^{\prime \prime}$ are the two 3 -vertices defining v_{i} to be a 4^{b}-vertex. Deleting $v, v_{i}, i=1,2,3,4,5$, together with their 3 -neighbors from G, we obtain a smaller graph G^{\prime}. By the minimality of G, G^{\prime} admits a $(3,1)$-coloring ϕ. To extend ϕ from G^{\prime} to G, we first properly color $v_{i}^{\prime}, v_{i}^{\prime \prime}$, for $i=1,2,3,4,5$, then color v_{i} with a color from $L\left(v_{i}\right) \backslash\left\{\phi\left(v_{i}^{\prime \prime \prime}\right)\right\}$, which appears in $\left\{\phi\left(v_{i}^{\prime}\right), \phi\left(v_{i}^{\prime \prime}\right)\right\}$ at most once. Now we color v with a color from $L(v)$, which appears on the neighbors of v at most once. This gives a $(3,1)$-coloring of G unless the color on v, say α, is used on v_{i} and one 3 -neighbor of v_{i} for some $i \in\{1,2,3,4,5\}$. In that case, we can recolor v_{i} with a color from $L\left(v_{i}\right) \backslash\left\{\alpha, \phi\left(v_{i}^{\prime \prime \prime}\right)\right\}$, giving a $(3,1)$-coloring of G with respect to L, a contradiction.

Lemma 5 ([8]). No 5-vertex in G is incident with
(1) Two (B, 4, 5)-faces.
(2) One (B, 4, 5)-face, and has two isolated 3-neighbors.
(3) Two (4- $4^{-}, 5$)-faces, and has one isolated 3-neighbor.
(4) One (5, B, 4)-face and one (5, B, 4^{+})-face, and has one isolated 3-neighbor.

Lemma 6 ([8]). No 6-vertex in G is incident with one ($6, B, 4^{g}$)-face and two (6, $4^{-}, 4^{-}$)-faces.

https://daneshyari.com/en/article/421131

Download Persian Version:

https://daneshyari.com/article/421131

Daneshyari.com

[^0]: St Supported by NSFC No. 11271335.

 * Corresponding author.

 E-mail address: yqwang@zjnu.cn (Y. Wang).
 http://dx.doi.org/10.1016/j.dam.2014.10.030 0166-218X/© 2014 Elsevier B.V. All rights reserved.

