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a b s t r a c t

Lih et al. showed that every planar graph without 4-cycles or i-cycles for some i ∈ {5, 6, 7}
is (3, 1)-choosable. Dong and Xu showed that every toroidal graph without 4-cycles or
6-cycles is (3, 1)-choosable. In this paper, we show that every toroidal graph without
4-cycles or i-cycles for some i ∈ {5, 7} is also (3, 1)-choosable.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

All graphs considered in this paper are finite, simple and undirected. A toroidal graph G is a graph drawn on the torus
without crossing edges. We use V (G), E(G), F(G) and δ(G) to denote the vertex set, edge set, face set and minimum degree
of G, respectively.

A list assignment L of G assigns a list L(v) of available colors for every v ∈ V (G). A k-list assignment satisfies that |L(v)| ≥ k
for any vertex v. An L-coloring φ of a graph G is a coloring of G such that φ(v) ∈ L(v) for every v ∈ V (G), and φ(x) ≠ φ(y)
whenever xy ∈ E(G).G is L-colorable if it admits an L-coloring. CallG k-choosable if it is L-colorable for every k-list assignment
L. Let d be a non-negative integer. An (L, d)-coloring is a mapping φ that assigns a color φ(v) ∈ L(v) to each vertex v ∈ V (G)
such that at most d neighbors of v receive color φ(v). A graph G is called (k, d)-choosable if it admits an (L, d)-coloring
for every list assignment L with |L(v)| ≥ k for all v ∈ V (G). Clearly, the (k, d)-choosability generalizes the classical
k-choosability.

Eaton and Hull [4] and Škrekovski [6] independently showed that every planar graph is (3, 2)-choosable. Škrekovski [7]
showed that every planar graph without 3-cycles is (3, 1)-choosable. Later, Lih et al. [5] showed that every planar graph
without 4-cycles or i-cycles for some i ∈ {5, 6, 7} is (3, 1)-choosable. Dong and Xu [2] extended this result for i ∈ {8, 9}.
Recently Wang and Xu [8] improved these results by proving that every planar graph without 4-cycles is (3, 1)-choosable.
Very recently, Chen and Raspaud [1] further improved this result by proving that every planar graph without adjacent
4−-cycles is (3, 1)-choosable.

As for improper choosability of toroidal graphs, Xu and Zhang [10] showed that every toroidal graph without adjacent
triangles is (4, 1)-choosable. Xu and Yu [9] proved that every toroidal graph with neither adjacent triangles nor 6-cycles is
(3, 1)-choosable if it further has no l-cycles for some l ∈ {5, 7}. Dong and Xu [3] showed that every toroidal graphs with
neither 4-cycles nor 6-cycles is (3, 1)-choosable. In this paper, we show the following result.
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Theorem 1. Every toroidal graph G with neither 4-cycles nor k-cycles for some k ∈ {5, 7} is (3, 1)-choosable.

The rest of this section is devoted to some definitions. For v ∈ V (G), let d(v) and N(v) denote the degree and the
neighborhood of v ∈ G, respectively. A vertex of degree k, (resp. at least k, atmost k)will be called a k-vertex (resp. k+-vertex,
k−-vertex). A similar notation will be used for cycles and faces, too. In this paper, a triangle is synonymous with a 3-face.
A vertex or an edge is called triangular if it is incident with a triangle. For f ∈ F(G), we use b(f ) to denote the boundary
walk of f and write f = [v1v2 · · · vn] if v1, v2, . . . , vk are the boundary vertices of f in a cyclic order, and say that f is a
(d(v1), d(v2), . . . , d(vk))-face. For any v ∈ V (G), we let v1, v2, . . . , vd(v) denote the neighbors of v in a cyclic order. Let
fi be the face with vvi and vvi+1 as two boundary edges for i = 1, 2, . . . , d(v), where indices are taken modulo d(v). Let
vv′

∈ E(G). If vv′ is non-triangular, then v′ is called an isolated neighbor of v. If v′ is an isolated 3-neighbor of v and v′ is
triangular, then v′ is called a pendent neighbor of v. Finally, two cycles or two faces are adjacent if they have at least one
edge in common; normally adjacent if their intersection consists of exactly one edge.

2. Reducibility

Suppose Theorem 1 is false. Let G = (V , E, F) be a counterexample to Theorem 1 with σ(G) = |V | + |E| as small as
possible. Clearly G is connected. Below are some known structural properties of G.

Lemma 1. (1) δ(G) ≥ 3 [5].
(2) G has no adjacent 3-vertices [5].
(3) G has no (4−, 4−, 4−)-face [1].
(4) A 4-vertex has at most two 3-neighbors [1].

According to Lemma 1(4), call a 4-vertex bad if it has exactly two isolated 3-neighbors; good otherwise. For short, by a
4b-vertex (4g-vertex, resp.) we mean a bad (good, resp.) 4-vertex.

Call a vertex v B-vertex if v is a 3-vertex or a 4b-vertex.
Let ∅ ≠ A ⊂ V (G) and G′

= G − A. By the minimality, G′ admits an (3, 1)-coloring φ using color from L(x) for every
x ∈ V (G′). For convenience, we use the notation φ(a) to denote the color assigned to a ∈ A in the process of extending φ
from G′ to G. Note that φ(A′) = {φ(a)|a ∈ A′

⊆ A} may be a multi-set of colors.

Lemma 2. G has no adjacent 4b-vertices.

Proof. Suppose to the contrary that G has two adjacent 4b-vertices, say v1 and v2. Let v
j
i , j = 1, 2, 3, be the remaining three

neighbors of vi, where v1
i and v2

i are the two isolated 3-neighbors of vi. Note that neither v3
1 nor v3

2 is a 3-vertex, and v3
1

and v3
2 may be identical. Let G′ be the graph obtained by deleting v1, v2 and all their isolated 3-neighbors from G. By the

minimality of G, G′ admits a (3, 1)-coloring φ (using color from L(x) for every x ∈ V (G′)). First we properly color v
j
i for

i, j = 1, 2. If φ(v1
1) = φ(v2

1), then we properly color v1, then color v2 with a color from L(v2) \ {φ(v3
2)}, which appears

in {φ(v1), φ(v1
2), φ(v2

2)} at most once. The same argument works if φ(v1
2) = φ(v2

2). We may assume that, for i = 1, 2,
φ(v1

i ) ≠ φ(v2
i ). Nowwe first color v1 with a color from L(v1)\{φ(v3

1)}, then color v2 with a color from L(v2)\{φ(v1), φ(v3
2)},

obtaining a (3, 1)-coloring of G with respect to L, a contradiction. �

By Lemmas 1 and 2, it is easy to deduce the following lemma.

Lemma 3. If f is a 3-face in G, then f is a (B, 4g , 5+)-, (B, 5+, 5+)-, (4g , 4g , 5+)-, (4g , 5+, 5+)-, or (5+, 5+, 5+)-face.

Lemma 4. A 5-vertex in G has at most four B-neighbors, in particular, four 3-neighbors.

Proof. Suppose to the contrary that all neighbors of v are B-vertices. Let vi, i = 1, 2, 3, 4, 5, be the neighbors of v. We
may assume that all neighbors of v are 4b-vertices, since if some neighbors of v are 3-vertices, then the proof is similar
(even easier). Let v′

i , v
′′

i , v
′′′

i be the three neighbors of vi other than v, where v′

i and v′′

i are the two 3-vertices defining vi to
be a 4b-vertex. Deleting v, vi, i = 1, 2, 3, 4, 5, together with their 3-neighbors from G, we obtain a smaller graph G′. By the
minimality ofG,G′ admits a (3, 1)-coloringφ. To extendφ fromG′ toG, we first properly color v′

i , v
′′

i , for i = 1, 2, 3, 4, 5, then
color vi with a color from L(vi)\{φ(v′′′

i )}, which appears in {φ(v′

i), φ(v′′

i )} at most once. Now we color v with a color from
L(v), which appears on the neighbors of v at most once. This gives a (3, 1)-coloring of G unless the color on v, say α, is used
on vi and one 3-neighbor of vi for some i ∈ {1, 2, 3, 4, 5}. In that case, we can recolor vi with a color from L(vi)\{α, φ(v′′′

i )},
giving a (3, 1)-coloring of Gwith respect to L, a contradiction. �

Lemma 5 ([8]). No 5-vertex in G is incident with
(1) Two (B, 4, 5)-faces.
(2) One (B, 4, 5)-face, and has two isolated 3-neighbors.
(3) Two (4−, 4−, 5)-faces, and has one isolated 3-neighbor.
(4) One (5, B, 4)-face and one (5, B, 4+)-face, and has one isolated 3-neighbor.

Lemma 6 ([8]). No 6-vertex in G is incident with one (6, B, 4g)-face and two (6, 4−, 4−)-faces.
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