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a b s t r a c t

A secure set in a graph G = (V , E) is a set of vertices S ⊆ V such that for any subset X ⊆ S,
|N[X] ∩ S| ≥ |N(X)− S|. A global secure set SD ⊆ V is a secure set that is also a dominating
set, i.e., N[SD] = V . In this paper we investigate global secure sets that contain exactly half
of the vertices of the graph. In particular we show that every hamiltonian claw-free cubic
graph has such a global secure set. Moreover, we prove that in any claw-free cubic graph
there is a global secure set that contains at most 5/9 of the vertices of the graph.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we study the minimum cardinality of global secure sets in claw-free cubic graphs. First we give necessary
definitions. Let G = (V , E) be a graph. Throughout this paper, we consider finite and undirected graphs without loops or
multiple edges. An open neighbourhood of a vertex v is the set N(v) = {x ∈ V : vx ∈ E}, whereas the closed neighbourhood
of v is the set N[x] = N(x) ∪ {x}. Similarly, an open (closed) neighbourhood of a set X ⊆ V is the set N(X) =


v∈X N(v)

(N [X] = N(X) ∪ X). The degree of a vertex v is the number of its neighbours and is denoted by d(v). Cubic graphs are graphs
in which every vertex is of degree 3. If d(v) = 1, then we say that v is a pendant vertex. A claw is a connected graph with 1
vertex of degree 3 and 3 pendant vertices. A graph is claw-free if it does not contain a claw as an induced subgraph. We say
that a graph G contains a graph H if there is a subgraph (not necessarily induced) of G isomorphic to H . Let B ⊆ V . Then, by
⟨B⟩ we denote the graph induced by the vertices of B. The length of the path is the number of its edges. A hamiltonian cycle
is a cycle that passes all vertices of a graph. For all undefined concepts we refer the reader to [2].

Secure sets were introduced by Brigham et al. in [1].

Definition 1 ([1]). Let G = (V , E) be a graph. For any S = {s1, s2, . . . , sk} ⊆ V , an attack on S is any kmutually disjoint sets
A = {A1, A2, . . . , Ak} for which Ai ⊆ N[si]− S, 1 ≤ i ≤ k. A defence of S is any kmutually disjoint sets D = {D1,D2, . . . ,Dk}

for which Di ⊆ N[si] ∩ S, 1 ≤ i ≤ k. Attack A is defendable if there exists a defence D such that |Di| ≥ |Ai| for 1 ≤ i ≤ k. The
set S is secure if and only if every attack on S is defendable.

Let S = {s1, s2, . . . , sk} be a secure set of G = (V , E). Following the authors of [1] we say that the members of S are the
defenders and the vertices of N[S] − S are the attackers. Let A = {A1, A2, . . . , Ak} be an attack on S and D = {D1,D2, . . . ,Dk}

be a defence against A. We say that a vertex v ∈ N[si] − S attacks si ∈ S if v ∈ Ai. Similarly, we say that a vertex sj ∈ S
defends si ∈ S if sj ∈ Di. An attack on S is maximal if every vertex of N[S] − S attacks a vertex of S. Clearly, to determine
whether a set of vertices is secure, it is enough to find a defence for every maximal attack. Brigham et al. also proved that

∗ Corresponding author.
E-mail addresses: K.Jesse-Jozefczyk@wmie.uz.zgora.pl (K. Jesse-Józefczyk), E.Sidorowicz@wmie.uz.zgora.pl (E. Sidorowicz).

http://dx.doi.org/10.1016/j.dam.2014.05.027
0166-218X/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.dam.2014.05.027
http://www.elsevier.com/locate/dam
http://www.elsevier.com/locate/dam
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dam.2014.05.027&domain=pdf
mailto:K.Jesse-Jozefczyk@wmie.uz.zgora.pl
mailto:E.Sidorowicz@wmie.uz.zgora.pl
http://dx.doi.org/10.1016/j.dam.2014.05.027


12 K. Jesse-Józefczyk, E. Sidorowicz / Discrete Applied Mathematics 175 (2014) 11–23

the set S is secure if and only if for every X ⊆ S, |N [X] ∩ S| ≥ |N [X] − S| [1]. A short proof of this result and an interesting
generalization of the definition of secure sets was recently given in [6] by Isaak, Johnson and Petrie.

A set D ⊆ V is a dominating set if N[D] = V . If a secure set is also a dominating set, then we say that it is a global secure
set. The minimum cardinality of a dominating set and a global secure set is denoted by γ (G) and γs(G), respectively. These
numbers are called a domination number and a global security number. For any connected graph G of order n, γ (G) ≤ ⌊n/2⌋
and γs(G) ≥ ⌈n/2⌉. The graphs having domination number equal to half their order are completely characterized. Obtaining
such characterization for global secure sets seems a hard task. Probably, it is even impossible. Our supposition follows from
the fact that graphs forwhich itwas proven that their global security number equals half their order do not share any specific
properties. Formore details search [4,7] and [8]. In this paper we prove that each hamiltonian claw-free cubic graph of order
n has the global security number equal to n/2.

Theorem 1. If a graph G of order n is a hamiltonian claw-free cubic graph, then γs(G) = n/2.

We believe that the global security number of non-hamiltonian claw-free cubic graphs will have the same value.

Conjecture 1. If a graph G of order n is a claw-free cubic graph, then γs(G) = n/2.

As a support of this conjecture we show that any claw-free cubic graph has a global secure set with at most 5/9 of the
vertices of the graph.

Theorem 2. If G is a claw-free cubic of order n, then γs(G) ≤ 5n/9.

The paper is organized as follows. In Section 2, we present some properties of secure sets and global secure sets containing
half of vertices of a graph. In Section 3 we consider the structure of global secure sets that contain half of vertices of a claw-
free cubic graph. Our two main results, i.e., Theorems 1 and 2 we prove in Sections 4 and 5, respectively. In Section 4, we
show that any hamiltonian claw-free cubic graph of order n has a global secure set of cardinality n/2. Whereas in Section 5,
we give an upper bound on the global security number of claw-free cubic graphs. We show that any claw-free cubic graph
has a global secure set with at most 5/9 of the vertices of the graph.

Throughout this paper we use the following drawing convention. In every figure the vertices of a graph that are coloured
black belong to a secure set. The white vertices are outside the secure set and the status of grey vertices is not precised and
is either irrelevant or is going to be determined.

2. Preliminaries

In the forthcoming sections we use the following properties of secure sets.

Proposition 1 ([1]). If S1 and S2 are vertex disjoint secure sets in the same graph, then S1 ∪ S2 is a secure set.

Observation 1. Let S be a secure set of G. If we add a new edge e that both of its end-vertices are either in or outside S, then S is
still the secure set of graph G + e.

For more results about properties of secure sets we refer the reader to [1,3,5] and [9]. Next, we present some properties of
global secure sets that contain exactly half of the vertices of a graph.

Proposition 2. Let G be a graph and S be a global secure set of G such that |V (G)| = 2|S|. Then,
(i) in any maximal attack, every vertex must participate in a defence of S,
(ii) for every vertex v ∈ S, N[N(v)] ∩ (V − S) ≠ ∅.

Proof. (i) Since S is a dominating set, every vertex of V − S has a neighbour in S. Thus, in any maximal attack there are
|V (G)|/2 attackers. If there is a vertex of S that do not participate in a defence, then the number of the attackers exceeds the
number of defenders and we have a contradiction with the security of S.

(ii) Suppose conversely that there exists a vertex v ∈ S such that N[N(v)]∩ (V − S) = ∅. By the definition of a secure set,
every vertex of S can defend either itself or one of its neighbours. Since neither v nor any of its neighbours has a neighbour
in V − S, v does not participate in any defence, which contradicts (i). �

Lemma 1. Let G be a graph and S be a global secure set of G such that |V (G)| = 2|S|, and let S1, . . . , Sk be vertex sets of
components of ⟨S⟩. Then, for any i, j ∈ {1, . . . , k} there does not exist a vertex x ∉ S such that x ∈ N(Si) ∩ N(Sj).

Proof. Suppose conversely that there exists a vertex x ∉ S and components of ⟨S⟩ such that x ∈ N(Si) ∩ N(Sj). Consider a
maximal attack A on S such that x attacks a vertex y ∈ Si. LetW denote the set of the attackers of Sj. Since A is maximal and
by Proposition 2 every vertex of Sj participates in a defence of S, |W | = |Sj|. Now let us modify the attack A in such a way
that x attacks a vertex z ∈ Sj, let us denote the obtained attack by A′. Now the vertices of Sj are attacked by |W |+1 attackers.
Since |W | = |Sj|, the attack A′ cannot be repelled, which contradicts the security of S. �

Corollary 1. Let G be a graph, S be a global secure set of G such that |V (G)| = 2|S|, and let S ′ be a vertex set of any component
of ⟨S⟩. Then, |S ′

| = |N[S ′
] − S|.
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