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a b s t r a c t

Let G be a connected graph of order n and minimum degree δ ≥ 2. The eccentric distance
sum ξ d(G) ofG is defined as


v∈V (G) ecG(v)DG(v), where ecG(v) is the eccentricity of vertex

v inG andDG(v) is the sumof all distances from v to other vertices ofG.We prove the upper
bound

ξ d(G) ≤
3 · 52

25(δ + 1)2
n4

+ O(n3).

Our bound is, for a fixed δ, asymptotically sharp and it extends a result of Ilić, Yu and Feng
(2011), and that of Zhang and Li (2011).

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Much recent research in pharmaceutical drug design has focused on identifying properties of chemicals directly from
their molecular structure. A key tool in this analysis is the use of topological indices, i.e., invariants of graphs that represent
the chemical compound under study. Many topological indices have been defined and used, but only a limited number have
been found to successfully predict activity. The first of these topological indices [8], introduced in 1947, is the well-studied
Wiener indexwhich is defined as the sum of all distances in the graph. In this paper we are concernedwith a distance-based
topological index of connected graphs called the eccentric distance sum.

Let G be a connected graph of order n with vertex set V = V (G). The eccentricity, ecG(v), of a vertex v in G is defined as
the maximum of the distances between v and all other vertices of G. The distance or status, DG(v), of a vertex v of G is the
sum


x∈V dG(v, x), where dG(v, x) is the distance between vertices v and x in G. Formally, the eccentric distance sum, ξ d(G),

of G is defined as

ξ d(G) =


v∈V

ecG(v)DG(v),

or equivalently

ξ d(G) =


{u,v}⊆V

[ecG(u) + ecG(v)]dG(u, v).
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The eccentric distance sumwas conceptualised, in 2002, by Gupta, Singh andMadan [3] who revealed that this invariant,
just like the Wiener index, is a very good predictor of anti-HIV activity of dihydroseselin analogues and that it can provide
valuable leads for the development of safe and potent therapeutic agents of diverse nature. Further comparisons between
the two indices, Wiener index and the eccentric distance sum, were undertaken showing that the latter is more superior in
the prediction of physical properties.

As such the investigations of the mathematical properties of these indices become a necessity. Several authors studied
theWiener index, for instance, Beezer, Riegsecker and Smith [1], Dankelmann and Entringer [2] and Kouider andWinkler [7]
proved independently that the average distance, a variant of theWiener index, of a connected graph of order n andminimum
degree δ is at most n

δ+1 + O(1). In terms of the Wiener index, this bound is equivalent to the bound,

W (G) ≤
n3

2(δ + 1)
+ O(n2). (1)

On the other hand, the investigations on the mathematical properties of the eccentric distance sumwas started recently
and a fair number of bounds on the index for graphs, or graph classes, in terms of other graph parameters such as
order, diameter, the Wiener index, the degree distance, eccentric connectivity index, independence number, connectivity,
matching number, chromatic number and the clique number have been reported [4,6,9,10]. Various explicit formulae for
the eccentric distance sum of graphs of chemical interest, such as the C4 nanotorus, i.e., a Cartesian product of two cycles,
the rectangular grid, the C4 nanotube, i.e., a Cartesian product of the path and the cycle, and for the join of two graphs, were
also presented in [6].

In light of the comparisons between the eccentric distance sum and the Wiener index, it is natural to ask how an upper
bound on the eccentric distance sum in terms of order and minimum degree differs from that of the Wiener index given in
(1). In [5], it was proved that ξ d(G) ≤ n(n − 1)(n − δ)2 for a connected graph G of order n and minimum degree δ. From
this, and (1), it is easy to see, using the inequality ξ d(G) ≤ 2 diam(G)W (G), where diam(G) is the diameter of G, that

ξ d(G) ≤
n3(n − δ)

δ + 1
+ O(n3).

Unfortunately, these two bounds on the eccentric distance sum in terms of order and minimum degree are not sharp for all
values of δ. The bounds are only attained when δ = n − 1, i.e., for complete graphs. The purpose of this paper is to find a
sharp upper bound on the eccentric distance sum in terms of order and minimum degree.

The notation that we use is as follows. The minimum degree is denoted by δ. In this paper, the minimum degree is fixed.
The distance between a vertex u in G and a subset S ⊆ V is defined as minv∈S dG(u, v) and is denoted by d(u, S). If K is a
subgraph of G we write K ≤ G. For a vertex v, N(v) denotes the set of all neighbours of v whilst N[v] = N(v) ∪ {v}. For a
subset S ⊆ V , G[S] denotes the induced subgraph of G by S and N[S] denotes the set ∪u∈S N[u]. We will also abuse notation
and write ξ d

G(S) for the quantity


{u,v}⊆S[ecG(u) + ecG(v)]dG(u, v) and call this the eccentric distance sum of vertices in S
in G. A 2-packing of G is a subset A ⊆ V with dG(u, v) > 2 for all u, v ∈ A. The kth power of G, denoted by Gk, is the graph
with vertex set V (G), in which two distinct vertices u and v are adjacent if dG(u, v) ≤ k. The diameter of G, i.e., the largest
value of the eccentricities of vertices of G, is denoted by d. The path on n vertices will be denoted by Pn.

We state here a result that will be used later in the paper.

Proposition 1.1 ([6,10]). Let G be a connected graph of order n. Then

ξ d(G) ≤ ξ d(Pn) =
52

25 · 3
n4

+ O(n3). �

2. Results

We first present a technical lemma that proves an upper bound on the eccentric distance sum of any tree T of order n+b
obtained by taking some tree H of order n and attaching b pendent vertices to H .

Lemma 2.1. Let T be a tree of order n + b obtained from a tree H of order n and diameter d by attaching b pendent vertices to
H. Then

ξ d(T ) ≤ ξ d(H) + d2b[2n − d + b] + O(b2) · O(n) + O(b) · O(n2) + O(n3).

Proof. Denote the set of b pendent vertices attached to H to obtain T by B, i.e., B = V (T ) − V (H), so that b = |B|. Then

ξ d(T ) =


{x,y}⊆V (T )

(ecT (x) + ecT (y))dT (x, y)

=


{x,y}⊆V (H)

(ecT (x) + ecT (y))dT (x, y) +


(x,y)∈B×V (H)

(ecT (x) + ecT (y))dT (x, y)

+


{x,y}⊆B

(ecT (x) + ecT (y))dT (x, y). (2)
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