Contents lists available at [ScienceDirect](http://www.elsevier.com/locate/dam)

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Note On *r*-equitable chromatic threshold of Kronecker products of complete graphs[☆]

Wei W[a](#page-0-1)ng^a, Zhidan Yan^a, Xin Zhang ^{[b,](#page-0-2)}*

^a *College of Information Engineering, Tarim University, Alar 843300, PR China* b *School of Mathematics and Statistics, Xidian University, Xi'an 710071, PR China*

a r t i c l e i n f o

Article history: Received 8 October 2013 Received in revised form 11 May 2014 Accepted 21 May 2014 Available online 6 June 2014

Keywords: Equitable coloring *r*-Equitable coloring *r*-Equitable chromatic threshold Kronecker product Complete graph

a b s t r a c t

Let *r* and *k* be positive integers. A graph *G* is *r*-equitably *k*-colorable if its vertex set can be partitioned into *k* independent sets, any two of which differ in size by at most *r*. The *r*-equitable chromatic threshold of a graph *G*, denoted by $\chi^*_{r=}$ (*G*), is the minimum *k* such that *G* is *r*-equitably *k*'-colorable for all $k' \geq k$. Let $G \times H$ denote the Kronecker product of graphs *G* and *H*. In this paper, we completely determine the exact value of $\chi_{r=}^*(\bar{K_m}\times K_n)$ for general *m*, *n* and *r*. As a consequence, we show that for $r \ge 2$, if $n \ge \frac{1}{r-1}(m+r)(m+2r-1)$ then $K_m \times K_n$ and its spanning supergraph $K_{m(n)}$ have the same *r*-equitable colorability, and in particular $\chi^*_{r=1}(K_m \times K_n) = \chi^*_{r=1}(K_{m(n)})$, where $K_{m(n)}$ is the complete *m*-partite graph with *n* vertices in each part.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

All graphs considered in this paper are finite, undirected and simple. Let *G* be a graph with vertex set *V*(*G*) and edge set *E*(*G*). For a positive integer *k*, let $[k] = \{1, 2, ..., k\}$. A (proper) *k*-*coloring* of *G* is a mapping $f : V(G) \rightarrow [k]$ such that $f(x) \neq f(y)$ whenever $xy \in E(G)$. The *chromatic number* of *G*, denoted by $\chi(G)$, is the smallest integer *k* such that *G* admits a *k*-coloring. We call the set $f^{-1}(i) = \{x \in V(G): f(x) = i\}$ a color class for each $i \in [k]$. Notice that each color class in a proper coloring is an independent set, i.e., a subset of *V*(*G*) of pairwise non-adjacent vertices, and hence a *k*-coloring is a partition of *V*(*G*) into *k* independent sets. For a fixed positive integer *r*, an *r*-*equitable k*-*coloring* of *G* is a *k*-coloring for which any two color classes differ in size by at most *r*. A graph is *r*-*equitably k*-*colorable* if it has an *r*-equitable *k*-coloring. The *r*-*equitable chromatic number* of *G*, denoted by χ ^{r}=(*G*), is the smallest integer *k* such that *G* is *r*-equitably *k*-colorable. For a graph *G*, the *r*-*equitable chromatic threshold* of *G*, denoted by χ ∗ *^r*⁼(*G*), is the smallest integer *k* such that *G* is *r*-equitably k' -colorable for all $k' \geq k$. Although the concept of *r*-equitable colorability seems a natural generalization of usual equitable colorability (corresponding to *r* = 1) introduced by Meyer [\[9\]](#page--1-0) in 1973, it was first proposed recently by Hertz and Ries [\[6,](#page--1-1)[7\]](#page--1-2), where the authors generalized the characterizations of usual equitable colorability of trees [\[2\]](#page--1-3) and forests [\[1\]](#page--1-4) to *r*-equitable colorability. Quite recently, Yen [\[12\]](#page--1-5) proposed a necessary and sufficient condition for a complete multipartite graph *G* to have an *r*-equitable *k*-coloring and also gave exact values of $\chi_{r=}(G)$ and $\chi_{r=}^*(G)$. In particular, they obtained the following results for $K_{m(n)}$, where $K_{m(n)}$ denotes the complete *m*-partite graph with *n* vertices in each part.

Corresponding author.

<http://dx.doi.org/10.1016/j.dam.2014.05.036> 0166-218X/© 2014 Elsevier B.V. All rights reserved.

CrossMark

[✩] Supported by the National Natural Science Foundation of China (No. 11301410) and the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20130203120021).

E-mail addresses: [xzhang@xidian.edu.cn,](mailto:xzhang@xidian.edu.cn) xdu.zhang@gmail.com (X. Zhang).

Lemma 1 ([\[12\]](#page--1-5)). For integers n, $r \ge 1$ and $k \ge m \ge 2$, $K_{m(n)}$ is r-equitably k-colorable if and only if $\left\lceil \frac{n}{\lfloor k/m \rfloor} \right\rceil - \left\lfloor \frac{n}{\lceil k/m \rceil} \right\rfloor \le r$.

Lemma 2 ([\[12\]](#page--1-5)). For integers n, $r \ge 1$ and $m \ge 2$, we have $\chi^*_{r=}(K_{m(n)}) = m\lceil \frac{n}{\theta+r} \rceil$, where θ is the minimum positive integer $\left[\frac{n}{\theta+1}\right] < \lceil \frac{n}{\theta+r} \rceil.$

The special case of [Lemmas 1](#page-1-0) and [2](#page-1-1) for $r = 1$ was obtained by Lin and Chang [\[8\]](#page--1-6).

For two graphs *G* and *H*, the *Kronecker product G* \times *H* of *G* and *H* is the graph with vertex set {(x, y): $x \in V(G)$, $y \in V(H)$ } and edge set $\{(x, y)(x', y') : xx' \in E(G) \text{ and } yy' \in E(H)\}$. In this paper, we analyze the *r*-equitable colorability of Kronecker product of two complete graphs. We refer to [\[3](#page--1-7)[,5,](#page--1-8)[8,](#page--1-6)[11\]](#page--1-9) for more studies on the usual equitable colorability of Kronecker products of graphs.

In [\[4\]](#page--1-10), Duffus et al. showed that if $m \le n$ then $\chi(K_m \times K_n) = m$. From this result, Chen [\[3\]](#page--1-7) got that $\chi=(K_m \times K_n) = m$ for $m \le n$. Indeed, let $V(K_m \times K_n) = \{(x_i, y_j): i \in [m], j \in [n]\}$. Then we can partition $V(K_m \times K_n)$ into m sets $\{(x_i, y_j): j \in [n]\}$ with $i = 1, 2, \ldots, m$, all of which have equal size and are clearly independent. Similarly, for any $r \ge 1$, $\chi_{r=1}(K_m \times K_n) = m$ for $m \le n$. However, it is much more difficult to determine the exact value of $\chi^*_{r=}(K_m \times K_n)$, even for $r=1$.

Lemma 3 ([\[8\]](#page--1-6)). For positive integers $m \le n$, we have $\chi_{=}^*(K_m \times K_n) \le \left\lceil \frac{mn}{m+1} \right\rceil$.

In the same paper, Lin and Chang determined the exact values of $\chi^*_=(K_2\times K_n)$ and $\chi^*_=(K_3\times K_n)$. Note that the case when $m = 1$ is trivial since $K_1 \times K_n$ is the empty graph I_n and hence $\chi^*_{-1}(K_1 \times K_n) = 1$. Recently, those results have been improved to the following.

Theorem 4 ([\[10\]](#page--1-11)). For integers $n > m > 2$,

$$
\chi_{=}^*(K_m \times K_n) = \begin{cases} \lceil \frac{mn}{m+1} \rceil, & \text{if } n \equiv 2, \ldots, m-1 \text{(mod } m+1); \\ m\lceil \frac{n}{s^*} \rceil, & \text{if } n \equiv 0, 1, m \text{(mod } m+1), \end{cases}
$$

where s^* is the minimum positive integer such that $s^* \nmid n$ and $m\lceil \frac{n}{s^*} \rceil \leq \lceil \frac{mn}{m+1} \rceil$.

From the definition of s^* , we see that $s^* \neq 1$ and hence $s^* \geq 2$. Let $\theta = s^* - 1$. Then we can restate [Theorem 4](#page-1-2) as follows.

Theorem 5. *For integers* $n \ge m \ge 2$ *,*

$$
\chi_{=}^*(K_m \times K_n) = \begin{cases} \lceil \frac{mn}{m+1} \rceil, & \text{if } n \equiv 2, \ldots, m-1 \text{(mod } m+1); \\ m\lceil \frac{n}{\theta+1} \rceil, & \text{if } n \equiv 0, 1, m \text{(mod } m+1), \end{cases}
$$

where θ is the minimum positive integer such that $\theta + 1 \nmid n$ and $m\left\lceil \frac{n}{\theta+1} \right\rceil \leq \left\lceil \frac{mn}{m+1} \right\rceil$.

A graph *H* is called a *subgraph* of *G* if $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$. A subgraph *H* is a *spanning subgraph* of *G* if it has the same vertex set as *G*.

Corollary 6. *If* $n \ge m$ *and* $n \equiv 2, ..., m - 1 \pmod{m + 1}$ *then* $\chi^*_{=} (K_m \times K_n) < \chi^*_{=} (K_{m(n)})$ *.*

Proof. Since $K_m \times K_n$ is a spanning subgraph of $K_{m(n)}$, $\chi^*_{-1}(K_m \times K_n) \leq \chi^*_{-1}(K_{m(n)})$. Therefore, the corollary follows if we can show $\chi^*_{=}(K_m \times K_n) \neq \chi^*_{=}(K_{m(n)})$. Let $n = (m + 1)s + t$ with $s = \lfloor \frac{n}{m+1} \rfloor$ and $2 \leq t \leq m - 1$. We have $\left\lceil \frac{mn}{m+1} \right\rceil = \left\lceil \frac{m(m+1)s+mt}{m+1} \right\rceil = \left\lceil \frac{m(m+1)s+(m+1)t-t}{m+1} \right\rceil = ms+t+\left\lceil \frac{-t}{m+1} \right\rceil = ms+t$. By [Theorem 5,](#page-1-3) $\chi^*_{=} (K_m \times K_n) = \left\lceil \frac{mn}{m+1} \right\rceil = ms+t$ and hence *m* is not a factor of $\chi^*_{-}(K_m \times K_n)$. On the other hand, by [Lemma 2,](#page-1-1) *m* is a factor of $\chi^*_{-}(K_{m(n)})$. Therefore, $\chi^*_{=} (K_m \times K_n) \neq \chi^*_{=} (K_{m(n)})$ and hence the proof is complete. \square

The main purpose of this paper is to obtain the exact value of $\chi^*_{r=}(K_m\times K_n)$ for any $r\geq 1$, which we state as the following theorem.

Theorem 7. *For any integers n* $\geq m \geq 2$ *and r* ≥ 1 *,*

$$
\chi_{r=1}^{*}(K_m \times K_n) = \begin{cases} n-r\left\lfloor \frac{n}{m+r} \right\rfloor, & \text{if } n \equiv 2, \ldots, m-1 \text{ (mod } m+r) \text{ and} \\ \left\lceil \frac{n}{\left\lfloor n/(m+r) \right\rfloor} \right\rceil - \left\lfloor \frac{n}{\left\lceil n/(m+r) \right\rceil} \right\rfloor > r; \\ m\left\lceil \frac{n}{\theta+r} \right\rceil, & \text{otherwise,} \end{cases}
$$

where θ is the minimum positive integer such that $\left\lfloor\frac{n}{\theta+1}\right\rfloor<\left\lceil\frac{n}{\theta+r}\right\rceil$ and $m\left\lceil\frac{n}{\theta+r}\right\rceil\leq\min\{n-r\left\lfloor\frac{n}{m+r}\right\rfloor,m\left\lceil\frac{n}{m+r}\right\rceil\}.$

Download English Version:

<https://daneshyari.com/en/article/421152>

Download Persian Version:

<https://daneshyari.com/article/421152>

[Daneshyari.com](https://daneshyari.com)