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a b s t r a c t

A graph G is said to be a set graph if it admits an acyclic orientation that is also extensional,
in the sense that the out-neighborhoods of its vertices are pairwise distinct. Equivalently,
set graphs are the underlying graphs of digraph representations of hereditarily finite sets,
where a set is hereditarily finite if it is finite and has only hereditarily finite sets asmembers.

It is known that every connected K1,3-free (or claw-free) graph is a set graph, and that
an extensional acyclic orientation of such a graph can be found in polynomial time. In this
paper, we generalize this result in three different directions. First, we identify the largest
hereditary class of graphsG such that for every connected induced subgraphH ofG, it holds
thatH is a set graph if and only if it is claw-free. Second,we consider graphs inwhich no two
distinct induced claws have equal or adjacent centers, and prove that in this class of graphs
set graphs can be equivalently characterized in terms of a property related to successive
vertex removal. Finally, we show that for every r > 1, connected K1,r+2-free graphs admit
an acyclic orientation that is r-extensional, in the sense that at most r distinct vertices
can have the same out-neighborhood. This also leads to a simple linear time algorithm
for finding an extensional acyclic orientation of a given connected claw-free graph, thus
improving over the previous algorithm.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

An extensional acyclic digraph is an acyclic digraph with the property that its vertices have pairwise distinct sets of out-
neighbors. A hereditarily finite set is a finite set such that all its members are hereditarily finite sets. Extensional acyclic
digraphs model hereditarily finite sets; see Fig. 1 for an example.

Extensional acyclic digraphs came into the spotlight with the rise of the field of computable set theory [5,19], which
aims to discover decidable fragments of set theory, and efficient decidability algorithms. This has led to programming
languages such asSETL [25], {log} [7], CLP(SET ) [8], and to an automatic proof verifierReferee [16,24], all havinghereditarily
finite sets as built-in concepts. On the more practical side, extensional acyclic digraphs can be characterized in terms of
separating codes in digraphs [9,6,13], with applications in the design of emergency sensor networks in facilities, or in fault
detection in multiprocessor systems. Some enumerative results related to extensional acyclic digraphs are [20,21,29,23,22].
See [14,13,21] for a more detailed discussion and further references.

In [14] we started a study of extensional acyclic digraphs and their underlying graphs – called set graphs – which we
continue in this paper. A sufficient (though not necessary) condition for a graph to be a set graph is to be connected and
claw-free.
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Fig. 1. The extensional acyclic digraph Dx modeling the hereditarily finite set x = {{{∅, {∅}}}}; Dx is the digraph (TrCl(x), {(y, z) | z ∈ y ∈ TrCl(x)}),
where TrCl(x), called the transitive closure of x, is the set recursively defined as x ∪


y∈x TrCl(y). The underlying graph of Dx is the paw.

Theorem 1 ([14]). Every connected claw-free graph is a set graph. An extensional acyclic orientation of a connected claw-free
graph can be found in polynomial time.

This paper is dedicated to generalizing Theorem 1 in three different directions. Before describing these generalizations,
let us first note that Theorem 1 was a fruitful result, since, on one hand, it gave a hint for simpler proofs [27,14] of the well-
known properties that squares of connected claw-free graphs are vertex pancyclic [12], and that connected claw-free graphs
of even order have a perfectmatching [26,28]. On the other hand, since one of ourmotivations for the study of set graphs is to
identify which graphs can be compactly represented by a hereditarily finite set,1 we took advantage of the representability
of connected claw-free graphs by hereditarily finite sets implied by Theorem 1 to formalize these two simpler proofs in
the automatic proof verifier Referee [18]; however, the proof in [14] of Theorem 1 itself is not simple enough to be easily
formalized in Referee.

The results in this paper are motivated also by the fact that one cannot hope for a ‘good’ characterization of set graphs,
since the recognition problem for set graphs is in general NP-complete [13]. The proof of this fact uses the following result,
where S(G) denotes the total subdivision graph of G, that is, the graph obtained from G by subdividing each edge once.

Theorem 2 ([13]). A graph G has a Hamiltonian path if and only if S(G) is a set graph.

The following two conditions for set graphs, one sufficient and one necessary, were also established in [14].

Theorem 3 ([14]). If G has a Hamiltonian path, then G is a set graph.

Lemma 1 ([14]). If G is a set graph, then for every X ⊆ V (G), G− X has at most 2|X | connected components.

In particular, the condition stated in Lemma 1 implies that every set graph G satisfies the following conditions:

(1) G is connected, and
(2) for every vertex v of G, the graph G− v has at most two connected components.

Inwhat follows,wewill refer to condition (2) above as the cut vertex condition. The clawK1,3 violates the cut vertex condition,
hence is not a set graph. However, it is the unique minimal connected non-set graph, as shown by Theorem 1.

The three generalizations of Theorem 1 are as follows.
In Section 2we characterize, in terms of forbidden induced subgraphs, the class of graphs G such that for every connected

induced subgraph H of G, it holds that H is a set graph if and only if it is claw-free. This class of graphs is a common
generalization of block graphs and claw-free graphs. Moreover, it turns out that this class of graphs coincides with the
class of graphs G such that for every induced subgraph H of G, it holds that H is a set graph if and only if it satisfies the cut
vertex condition. This implies that the recognition of set graphs in this class can be carried out in linear time. We also give
a structural result describing a recursive way of building every graph in this class from claw-free graphs.

In Section 3 we investigate another generalization of claw-free graphs: the so-called claw restricted graphs, which we
define as graphs in which no two distinct induced claws have equal or adjacent centers. We prove that every set graph is
reducible to a complete graph on at most two vertices by successively removing either one vertex, or a set of two vertices
consisting of a leaf and its neighbor, in such a way that all the intermediate graphs are connected and satisfy the cut vertex
condition. It turns out that for claw restricted graphs, this necessary condition is also sufficient for being a set graph. On the
negative side, we show that the set graph recognition remains NP-complete in the class of claw restricted graphs.

In Section 4we introduce a relaxation of the notion of extensional orientation, the so-called r-extensional orientation. For
r = 1, this notion coincides with extensional orientation. We generalize Theorem 1 by showing that for every r > 1, every
connected K1,r+2-free graph admits an r-extensional acyclic orientation with a unique sink. Our proof is constructive and
leads to a simple linear time algorithm for finding such an orientation. In particular, this improves on the polynomial time
algorithm for finding an extensional acyclic orientation of a connected claw-free graph given by (the proof of) Theorem 1
in [14]. (A straightforward implementation of that algorithm has complexity O(n3∆2) if the input graph has n vertices and

1 For example, the paw can be compactly represented by the set {{{∅, {∅}}}}, cf. Fig. 1; see [14,18] for further details.
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