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a b s t r a c t

The concept of forcing faces of a plane bipartite graphwas first introduced in Che and Chen
(2008) [3] [Z. Che, Z. Chen, Forcing faces in plane bipartite graphs, DiscreteMathematics 308
(2008) 2427–2439], which is a natural generalization of the concept of forcing hexagons
of a hexagonal system introduced in Che and Chen (2006) [2] [Z. Che and Z. Chen,
Forcing hexagons in hexagonal systems, MATCH Commun.Math. Comput. Chem. 56 (2006)
649–668]. In this paper, we further extend this concept from finite faces to all faces
(including the infinite face) as follows: A face s (finite or infinite) of a 2-connected plane
bipartite graph G is called a forcing face if the subgraph G − V (s) obtained by removing all
vertices of s together with their incident edges has exactly one perfect matching.

For a plane elementary bipartite graph G with more than two vertices, we give three
necessary and sufficient conditions for G to have all faces forcing. We also give a new
necessary and sufficient condition for a finite face of G to be forcing in terms of bridges
in the Z-transformation graph Z(G) of G. Moreover, for the graphs G whose faces are all
forcing, we obtain a characterization of forcing edges in G by using the notion of handle,
from which a simple counting formula for the number of forcing edges follows.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

An edge of a connected graph G is called a forcing edge if it is contained in exactly one perfect matching of G. The notion
of forcing edge first appeared in a 1991 paper [6] on polyhexes by Harary et al. The root of these concepts can be traced to
the works [8,11] by Randić and Klein in 1985–1987. Since then, forcing edges of perfect matchings have been investigated
intensively for hexagonal systems (also called polyhexes) because they are closely related to the study ofmolecule resonance
structures in chemistry. Most known results on forcing edges have been surveyed in [4], where some open questions and
conjectures are also included.

In 1995, Zhang and Li [15] gave characterizations for a hexagonal system with forcing edges, by using the concept of
Z-transformation graph of a hexagonal system introduced by Zhang et al. in [14]. In order to extend various studies on
hexagonal systems, Zhang and Zhang [17] conducted an extensive study on plane elementary bipartite graphs so that many
important known results for hexagonal systems can be treated in a unified way for plane bipartite graphs. In particular,
they extended the concept of forcing edges from hexagonal systems to plane bipartite graphs. Motivated by their work,
we introduced the concept of forcing hexagons of a hexagonal system in [2], and further generalized the above concept to
forcing faces of a plane bipartite graph in [3]. Some known results on forcing hexagons and forcing faces will be presented
in the next section.
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In this paper, we further extend the concept of forcing faces of a plane bipartite graph from finite faces to all faces
(including the infinite face). For a plane elementary bipartite graph G with more than two vertices, we show that the
following statements are equivalent:

(i) each finite face of G is forcing,
(ii) each face of G is forcing,
(iii) each perfect matching of G contains a forcing edge,
(iv) the subgraph G − V (s1) − V (s2) has no perfect matchings for any two vertex disjoint faces s1 and s2 (one can be the

infinite face) of G.

Moreover, we show that a finite face s of G is forcing if and only if its Z-transformation graph Z(G) has exactly one bridge
M1M2 such that the symmetric difference ofM1 and M2 is the boundary of s.

Finally, we further study the forcing edges in a plane elementary bipartite graphGwhich has all faces forcing. By using the
notion of handle, we obtain a characterization of forcing edges in G, from which a simple counting formula for the number
of forcing edges follows.

2. Preliminaries

All graphs considered in this paper are finite, simple and connected. A perfect matching (or, 1-factor) of a graph G is a set
of disjoint edges that covers all vertices of G. We assume that all graphs G in this paper have a perfect matching unless it is
specified. An edge of G is called allowed if it is contained in a perfect matching of G, and forbidden otherwise. A graph G is
called elementary if the union of all perfect matchings of G forms a connected subgraph. It is clear that any elementary graph
with more than two vertices has no pendant edges and that such a graph has at least two perfect matchings. In particular, a
connected bipartite graph is elementary if and only if each edge of the graph is allowed, see [9].

Let M be a perfect matching of a graph G. A cycle C of G is called an M-alternating cycle if its edges are alternately in M
and E(G) −M , and we simply call C an alternating cycle if there is no need to specify the perfect matchingM . The symmetric
difference of two perfect matchings M and N of G, denoted by M ⊕ N , is the set of edges contained in either M or N , but
not in both. An (M,N)-alternating cycle of G is a cycle whose edges are in M and N alternately. It is well known [9] that the
symmetric difference of two perfect matchings M and N of G is a disjoint union of (M,N)-alternating cycles. By definition,
we can see thatM is the unique perfect matching of G if and only if G has noM-alternating cycles. Kotzig [7] showed that if
a connected graph G has a unique perfect matching M , then G has a bridge in M . Therefore, any 2-connected graph with a
perfect matching has at least two perfect matchings.

A graph is called a plane graph if it is drawn in the plane in such a way that any two edges do not intersect, except at a
common end vertex if any. A planar embedding of a graph G is a plane graph G′ isomorphic to G. A graph is called a planar
graph if there is a planar embedding of the graph. A plane graph divides the plane into regions which are called faces. Each
bounded region is called a finite face, and the unbounded region is called the infinite face. A face s (finite or infinite) of a plane
graph G is said to be M-resonant if the boundary of s is an M-alternating cycle with respect to some perfect matching M of
G. AnM-resonant face is briefly said to be resonant when there is no need to specify the perfect matchingM . The following
characterization of a plane elementary bipartite graph in terms of resonant faces was given by Zhang and Zhang (2000).

Theorem 2.1 ([17]). Let G be a connected plane bipartite graph with more than two vertices. Then each face of G (including the
infinite face) is resonant if and only if G is elementary.

The concept of forcing face was first introduced in [3, Definition 1.1] as follows: In a connected plane bipartite graph
G with minimum degree >1, a finite face s of G is called a forcing face if the subgraph G − V (s) obtained by removing all
vertices of s together with their incident edges has exactly one perfect matching. It is known [17] that for any connected
plane bipartite graphGwithminimumdegree>1, ifGhas a forcing edge, thenG is elementary. In [3]weproved the following
result.

Theorem 2.2 (Theorem 3.1 in [3]). For any connected plane bipartite graph G with no pendent edges, if G has a forcing (finite)
face, then G is elementary.

Here wemust point out that the ‘‘finite face s’’ in the definition of ‘‘forcing face’’ should be clarified as ‘‘finite face swhose
boundary is an even cycle’’. Otherwise, that definition would not be so meaningful. It is because the number of vertices on
the boundary of a finite face smay be an odd number if the boundary of s is not a cycle, whichmay occur in the uninteresting
case that the graph G itself has no perfect matchings although G − V (s) has exactly one perfect matching. For example in
Fig. 1, G1 − V (s) is an edge and so has exactly one perfect matching, but obviously G1 has no perfect matchings. Moreover,
the proof given in [3] for Theorem 2.2 implicitly used the assumption that ‘‘a forcing face is a finite face whose boundary
is an even cycle’’. This occurred when we claimed in the proof that a forcing (finite) face of G must be in some elementary
component of G. If we allow a finite face swhose boundary is not an even cycle to be included in the definition for a forcing
face, then the claim mentioned above is not always valid for the graphs G in concern, and so Theorem 2.2 will not hold in
general even if the graph G does have perfect matchings. This can be seen from the graph G2 depicted in Fig. 1. It is clear that
G2 has perfect matchings, and that G2 − V (s) has exactly one perfect matching. But G2 is not elementary since its edge e is
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