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a b s t r a c t

We study a family of combinatorial optimization problems defined by a parameter p ∈
[0, 1], which involves spectral functions applied to positive semidefinite matrices, and has
some application in the theory of optimal experimental design. This family of problems
tends to a generalization of the classical maximum coverage problem as p goes to 0, and to
a trivial instance of the knapsack problem as p goes to 1.

In this article, we establish a matrix inequality which shows that the objective function
is submodular for all p ∈ [0, 1], fromwhich it follows that the greedy approach, which has
often been used for this problem, always gives a design within 1−1/e of the optimum.We
next study the design found by rounding the solution of the continuous relaxed problem,
an approach which has been applied by several authors. We prove an inequality which
generalizes a classical result from the theory of optimal designs, and allows us to give a
rounding procedure with an approximation factor which tends to 1 as p goes to 1.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

This work is motivated by a generalization of the classical maximum coverage problem which arises in the study of
optimal experimental designs. This problem may be formally defined as follows: given s positive semidefinite matrices
M1, . . . ,Ms of the same size and an integer N < s, solve:

max
I⊂[s]

rank


i∈I

Mi


(P0)

s.t. card(I) ≤ N,

where we use the standard notation [s] := {1, . . . , s} and card(S) denotes the cardinality of S. When each Mi is diagonal, it
is easy to see that Problem (P0) is equivalent to a max-coverage instance, by defining the sets Si = {k : (Mi)k,k > 0}, so that
the rank in the objective of Problem (P0) is equal to card


∪i∈I Si


.

A more general class of problems arising in the study of optimal experimental designs is obtained by considering a
deformation of the rank which is defined through a spectral function. Given p ∈ [0, 1], solve:

max
n∈Ns

ϕp (n) (Pp)

s.t.

i∈[s]

ni ≤ N,
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where ϕp(n) is the sum of the eigenvalues of


i∈[s] niMi raised to the exponent p: if the eigenvalues of the positive
semidefinite matrix


i∈[s] niMi are λ1, . . . , λm (counted with multiplicities), ϕp(n) is defined by

ϕp(n) = trace


i∈[s]

niMi

p

=

m
k=1

λ
p
k.

We shall see that Problem (P0) is the limit of Problem (Pp) as p→ 0+ indeed. On the other hand, the limit of Problem (Pp) as
p→ 1 is a knapsack problem (in fact, it is the trivial instance in which the ith item has weight 1 and utility ui = traceMi).
Note that a matrix Mi may be chosen ni times in Problem (Pp), while choosing a matrix more than once in Problem (P0)
cannot increase the rank. Therefore we also define the binary variant of Problem (Pp):

max
n


ϕp (n) : n ∈ {0, 1}s,


i∈[s]

ni ≤ N


. (Pbin

p )

We shall also consider the case in which the selection of the ith matrix costs ci, and a total budget B is allowed. This is the
budgeted version of the problem:

max
n


ϕp (n) : n ∈ Ns,


i∈[s]

cini ≤ B


. (Pbdg

p )

Throughout this article, we use the term design for the variable n = (n1, . . . , ns) ∈ Ns. We say that n is a N-replicated
design if it is feasible for Problem (Pp), a N-binary design if n is feasible for Problem (Pbin

p ), and a B-budgeted design when it
satisfies the constraints of (Pbdg

p ).

1.1. Motivation: optimal experimental design

The theory of optimal design of experiments plays a central role in statistics. It studies how to best select experiments
in order to estimate a set of parameters. Under classical assumptions, the best linear unbiased estimator is given by least
square theory, and lies within confidence ellipsoids which are described by a positive semidefinite matrix depending only
on the selected experiments. The optimal design of experiments aims at selecting the experiments in order to make these
confidence ellipsoids as small as possible, which leads to more accurate estimators.

A common approach consists in minimizing a scalar function measuring these ellipsoids, where the function is taken
from the class of Φp-information functions proposed by Kiefer [16]. This leads to a combinatorial optimization problem
(decide how many times each experiment should be performed) involving a spectral function which is applied to the
information matrix of the experiments. For p ∈ ]0, 1], Kiefer’s Φp-optimal design problem is equivalent to Problem (Pp)
(up to the exponent 1/p in the objective function).

In fact, little attention has been given to the combinatorial aspects of Problem (Pp) in the optimal experimental design
literature. The reason is that there is a natural relaxation of the problemwhich ismuchmore tractable and usually yields very
good results: instead of determining the exact number of times ni that each experiment will be selected, the optimization
is done over the fractionswi = ni/N ∈ [0, 1], which reduces the problem to the maximization of a concave function over a
convex set (this is the theory of approximate optimal designs). For the common case, in which the number N of experiments
to perform is large and N > s (where s is the number of available experiments), this approach is justified by a result
of Pukelsheim and Rieder [26], who give a rounding procedure to transform an optimal approximate design w∗ into an
N-replicated design n = (n1, . . . , ns) which approximates the optimum of the Kiefer’s Φp-optimal design problem within
a factor 1− s

N .
The present developments were motivated by a joint work with Bouhtou and Gaubert [4,30] on the application of

optimal experimental design methods to the identification of the traffic in an Internet backbone. This problem describes
an underinstrumented situation, in which a small number N < s of experiments should be selected. In this case, the
combinatorial aspects of Problem (Pp) become crucial. A similar problem was studied by Song et al. [31], who proposed
to use a greedy algorithm to approximate the solution of Problem (Pp). In this paper, we give an approximation bound
which justifies this approach. Another question addressed in this manuscript is whether it is appropriate to take roundings
of (continuous) approximate designs in the underinstrumented situation (recall that this is the common approach when
dealing with experimental design problems in the overinstrumented case, where the numberN of experiments is large when
compared to s).

Appendix A is devoted to the application to the theory of optimal experimental designs; we explain how a statistical
problem (choose which experiments to conduct in order to estimate a set of parameters) leads to the study of Problem (Pp),
with a particular focus to the underinstrumented situation described above. For more details on the subject, the reader is
referred to the monographs of Fedorov [9] and Pukelsheim [25].
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