Contents lists available at SciVerse ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

On α -total domination in graphs

Michael A. Henning^{a,*}, Nader Jafari Rad^b

^a Department of Mathematics, University of Johannesburg, Auckland Park, 2006 South Africa ^b Department of Mathematics, Shahrood University of Technology, Shahrood, Iran

ARTICLE INFO

Article history: Received 3 August 2011 Received in revised form 17 November 2011 Accepted 22 November 2011 Available online 20 December 2011

Keywords: Domination Total domination α -domination

1. Introduction

ABSTRACT

Let G = (V, E) be a graph with no isolated vertex. A subset of vertices S is a total dominating set if every vertex of G is adjacent to some vertex of S. For some α with $0 < \alpha < 1$. a total dominating set *S* in *G* is an α -total dominating set if for every vertex $v \in V \setminus S$, $|N(v) \cap S| > \alpha |N(v)|$. The minimum cardinality of an α -total dominating set of G is called the α -total domination number of G. In this paper, we study α -total domination in graphs. We obtain several results and bounds for the α -total domination number of a graph G.

© 2011 Elsevier B.V. All rights reserved.

In this paper, we continue the study of total domination in graphs which is well studied in graph theory. Let G = (V, E)be a graph with vertex set V, edge set E and no isolated vertex. A dominating set D in a graph G is a set of vertices of G such that each vertex not in D is adjacent to a vertex of D, while a total dominating set, denoted TDS, of G is a set S of vertices of G such that every vertex is adjacent to a vertex in S. The total domination number of G, denoted by $\gamma_t(G)$, is the minimum cardinality of a TDS. A TDS of G of cardinality $\gamma_t(G)$ is called a $\gamma_t(G)$ -set. The literature on this subject has been surveyed and detailed in the two books by Haynes et al. [7,6]. A recent survey of total domination in graphs can be found in [9].

For notation and graph theory terminology we in general follow [7]. Specifically, let v be a vertex in V. The open neighborhood of v is $N_G(v) = \{u \in V \mid uv \in E\}$ and its closed neighborhood is $N_G[v] = N_G(v) \cup \{v\}$. The degree of v is $d_G(v) = |N_G(v)|$. If the graph G is clear from the context, then we simply write N(v), N[v] and d(v) rather than $N_G(v)$, $N_G[v]$ and $d_G(v)$, respectively. The minimum and maximum degree among the vertices of G is denoted by $\delta(G)$ and $\Delta(G)$, respectively. The order of G is given by n(G) = |V(G)| and its size by m(G) = |E(G)|. A cycle on n vertices is denoted by C_n , while a path on *n* vertices is denoted by P_n . A vertex of degree one is called a *leaf*, and its neighbor is called a *support vertex.* We denote the set of leaves of G by L(G). For a subset $S \subseteq V$, the subgraph induced by S is denoted by G[S]. A packing in *G* is a set of vertices that are pairwise at distance at least 3 apart in *G*.

A vertex and an edge are said to cover each other in a graph G if they are incident in G. A vertex cover in G is a set of vertices that covers all the edges of G, while a total vertex cover in G, abbreviated TVC, is a vertex cover that induces a subgraph with no isolated vertex. The minimum cardinality among all the TVCs in G is called the *total vertex covering number* of G and is denoted by tvc(G). A TVC in G of cardinality tvc(G) is called a tvc(G)-cover.

A set of pairwise independent edges of G is called a matching in G, while a matching of maximum cardinality is a maximum *matching*. The number of edges in a maximum matching of G is called the *matching number* of G which we denote by $\alpha'(G)$.

Corresponding author. Tel.: +27 33 2605648; fax: +27 11 5594670.

E-mail addresses: mahenning@uj.ac.za (M.A. Henning), n.jafarirad@shahroodut.ac.ir (N.J. Rad).

⁰¹⁶⁶⁻²¹⁸X/\$ - see front matter © 2011 Elsevier B.V. All rights reserved. doi:10.1016/j.dam.2011.11.021

In this paper we study a variant of total domination in graphs, called α -total domination. For some α with $0 < \alpha \le 1$, we say that a TDS *S* in *G* is an α -total dominating set, abbreviated by α TDS, if for every vertex $v \in V \setminus S$, $|N(v) \cap S| \ge \alpha |N(v)|$. Thus, every vertex v outside the TDS *S* has at least $\alpha |N(v)|$ neighbors inside *S*. The minimum cardinality of an α -TDS of *G* is called the α -total domination number of *G* and is denoted by $\gamma_{\alpha t}(G)$. An α TDS of *G* of cardinality $\gamma_{\alpha t}(G)$ is called a $\gamma_{\alpha t}(G)$ -set. Every graph without isolated vertices has a α TDS, since S = V is such a set.

The analogous concept of α -domination in graphs was introduced by Dunbar et al. [4] who defined a dominating set *D* to be an α -dominating set, abbreviated by α DS, if for every vertex $v \in V \setminus D$, we have $|N(v) \cap D| \ge \alpha |N(v)|$. The minimum cardinality of an α DS of *G* is called the α -domination number of *G* and is denoted by $\gamma_{\alpha}(G)$. An α DS of *G* of cardinality $\gamma_{\alpha}(G)$ is called a $\gamma_{\alpha}(G)$ -set. The concept of α -domination in graphs has been studied, for example, in [3,5] and elsewhere.

2. Properties of α -total dominating sets

In this section, we present basic properties of α TDSs in graphs. Throughout this section, let G = (V, E) be a graph with no isolated vertex and with maximum degree $\Delta = \Delta(G)$, and let α satisfy $0 < \alpha \leq 1$.

Since every α TDS is a TDS, we observe that $\gamma_t(G) \le \gamma_{\alpha t}(G)$ for all α . Further for $0 < \alpha \le 1/\Delta$ and for every vertex $v \in V$, we observe that $\alpha |N(v)| \le 1$, and so in this case an α TDS *S* in *G* simply requires that every vertex outside *S* is adjacent to at least one vertex inside *S*. Thus every TDS is an α TDS, whence $\gamma_{\alpha t}(G) = \gamma_t(G)$. Therefore α -total domination in graphs is a generalization of total domination in graphs.

Let α satisfy $(\Delta - 1)/\Delta < \alpha \le 1$. We observe that in this range, every α TDS is a TVC in the graph. To see this, let *S* be an arbitrary α TDS in *G*. For each vertex $v \in V \setminus S$, we have that

$$|N(v) \cap S| \ge \alpha |N(v)| > \left(\frac{\Delta - 1}{\Delta}\right) |N(v)| = \left(1 - \frac{1}{\Delta}\right) d(v) \ge d(v) - 1,$$

implying that $|N(v) \cap S| \ge d(v)$. Hence, $N(v) \subseteq S$ for every vertex $v \in V \setminus S$, and so $V \setminus S$ is an independent set in *G*. Equivalently, the set *S* is a total vertex cover in *G*. Since *S* is an arbitrary α TDS in *G*, we have that tvc(G) $\le \gamma_{\alpha t}(G)$. On the other hand, every total vertex cover in *G* is an α TDS, and so $\gamma_{\alpha t}(G) \le$ tvc(*G*). Consequently, $\gamma_{\alpha t}(G) =$ tvc(*G*) for $(\Delta - 1)/\Delta < \alpha \le 1$. Therefore α -total domination in graphs is a generalization of total vertex cover in graphs.

Since every α TDS is an α DS, we observe that $\gamma_{\alpha}(G) \leq \gamma_{\alpha t}(G)$ for all α with $0 < \alpha \leq 1$. If there exists a $\gamma_{\alpha}(G)$ -set *S* such that *G*[*S*] has no isolated vertex, then *S* is an α TDS, implying that $\gamma_{\alpha t}(G) \leq |S| = \gamma_{\alpha}(G)$, and so $\gamma_{\alpha}(G) = \gamma_{\alpha t}(G)$. Let *D* be a $\gamma_{\alpha}(G)$ -set. For each vertex $v \in D$, let v' denote an arbitrary neighbor of v in *G* and let $D' = \bigcup_{v \in D} \{v'\}$. Then the set $D \cup D'$ is an α TDS, and so $\gamma_{\alpha t}(G) \leq |D \cup D'| \leq 2|D| = 2\gamma_{\alpha}(G)$. Further if *D* is not a packing in *G*, then we can choose *D'* so that $|D \cup D'| < 2|D|$.

If *M* is a maximum matching in *G* and *D* is the set consisting of the 2|M| vertices of *G* incident with edges in *M*, then *D* is an α TDS, implying that $\gamma_{\alpha t}(G) \leq 2\alpha'(G)$ for all α .

Our earlier remarks, together with the definition of an α TDS, readily imply the following observation, which summarizes fundamental properties of α -total dominating sets in a graph.

Observation 1. Let *G* be a graph of order *n* with no isolated vertex and with maximum degree Δ . Let α satisfy $0 < \alpha \le 1$. Then the following holds.

(a) $\max\{\gamma_t(G), \gamma_\alpha(G)\} \le \gamma_{\alpha t}(G) \le \min\{n, 2\gamma_\alpha(G), 2\alpha'(G), tvc(G)\}.$

(b) For $0 < \alpha \leq 1/\Delta$, we have $\gamma_{\alpha t}(G) = \gamma_t(G)$.

(c) For $(\Delta - 1)/\Delta < \alpha \leq 1$, we have $\gamma_{\alpha t}(G) = \text{tvc}(G)$.

(d) If $0 < \alpha_1 \le \alpha_2 \le 1$, then $\gamma_{\alpha_1 t}(G) \le \gamma_{\alpha_2 t}(G)$.

(e) $\gamma_{\alpha t}(G) = 2\gamma_{\alpha}(G)$ if and only if every $\gamma_{\alpha}(G)$ -set is a packing in G.

(f) $\gamma_{\alpha t}(G) = \gamma_{\alpha}(G)$ if and only if there is a $\gamma_{\alpha}(G)$ -set S such that G[S] has no isolated vertex.

3. Exact values

In this section, we determine exact values of the α -total domination number for special classes of graphs. It is known (see [4]) that for a complete graph K_n , $\gamma_{\alpha}(K_n) = \lceil \alpha(n-1) \rceil$ for all α with $0 < \alpha \le 1$. Hence by Observation 1(e), we have the result of Proposition 2. However for completeness, we provide a short proof of this result.

Proposition 2. If K_n is a complete graph with $n \ge 2$ vertices, then for all α with $0 < \alpha \le 1$, we have $\gamma_{\alpha t}(K_n) = \max\{2, \lceil \alpha(n-1) \rceil\}$.

Proof. Let $G = K_n$. By Observation 1, $\gamma_{\alpha t}(G) \ge \gamma_t(G) = 2$. Hence we may assume that $\lceil \alpha(n-1) \rceil > 2$, for otherwise the desired bound is immediate. If D is an $\gamma_{\alpha t}(G)$ -set, then for every vertex $v \in V \setminus D$, we have $|N(v) \cap D| \ge \lceil \alpha(n-1) \rceil$, and so $\gamma_{\alpha t}(G) = |D| \ge \lceil \alpha(n-1) \rceil$. To prove the reverse inequality, let S be an arbitrary subset of vertices in G such that $|S| = \lceil \alpha(n-1) \rceil$. By assumption, |S| > 2 and so S is a TDS in G. For every vertex $v \in V \setminus S$, we have $|N(v) \cap S| = |S| = \lceil \alpha(n-1) \rceil = \lceil \alpha |N(v)| \rceil \ge \alpha |N(v)|$, implying that S is an α TDS. Hence, $\gamma_{\alpha t}(G) \le |S| = \lceil \alpha(n-1) \rceil$. Consequently, $\gamma_{\alpha t}(G) = \lceil \alpha(n-1) \rceil$.

Download English Version:

https://daneshyari.com/en/article/421224

Download Persian Version:

https://daneshyari.com/article/421224

Daneshyari.com