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a b s t r a c t

A plane graph is called entirely k-choosable if for any list assignment L such that | L(x) |= k
for each x ∈ V (G) ∪ E(G) ∪ F(G), we can assign each element x a color from its list such
that any two elements that are adjacent or incident receive distinct colors. Wang and Lih
(2008) [5] conjectured that every plane graph is entirely (∆ + 4)-choosable and showed
that the conjecture is true if ∆ ≥ 12. In this note, we prove that (1) Every plane graph G
with ∆ ≥ 7 is entirely (∆ + 4)-choosable. (2) Every plane graph G with ∆ ≥ 6 is entirely
(∆ + 5)-choosable.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Graphs considered in this note are finite, simple and undirected. Unless stated otherwise, we follow the notations and
terminology in [1].

For a plane graph G, we denote its vertex set, edge set, face set, and minimum degree by V (G), E(G), F(G) and δ(v),
respectively. For a vertex v, dG(v) and NG(v) denote its degree and the set of its neighbors in G, respectively.

We use b(f ) to denote the boundary walk of a face f and write f = [v1v2v3 · · · vn] if v1, v2, v3, . . . , vn are the vertices of
b(f ) in cyclic order. The degree, d(f ), of a face f is the number of edges in its boundary b(f ), cut edges being counted twice.
A k-vertex (or k-face) is a vertex (or a face) of degree k, a k−-vertex (or k−-face) is a vertex (or a face) of degree at most k, and
a k+-vertex (or k+-face) is defined similarly.

Two faces of a plane graph are said to be adjacent if they have at least one common boundary edge. For x ∈ V (G) ∪ F(G),
we use Fk(x) and Vk(x) to denote the set of all k-faces and k-vertices that are incident or adjacent to x, respectively. For
f ∈ F(G), we write f = [u1u2 · · · un] if u1, u2, . . . , un are on the boundary of f in clockwise order.

A k-coloring of G is a mapping φ from V (G) to a set of size k such that φ(x) ≠ φ(y) for any adjacent vertices x and y. A
graph is k-colorable if it has a k-coloring.

A list-assignment L to the vertices of G is an assignment of a set L(v) of colors to vertex v for every v ∈ V (G). If G has a
coloring φ such that φ(v) ∈ L(v) for all vertices v, then we say that G is L-colorable or φ is an L-coloring of G. We say that G
is k-list colorable (or k-choosable) if it is L-colorable for every list-assignment L satisfying |L(v)| = k for all vertices v.

An entire coloring of a plane graph G is a coloring of the faces, vertices, and edges of G, which we call the elements of G, so
that all incident or adjacent elements receive distinct colors; an entire list-coloring is defined analogously. In 1972, Kronk
and Mitchem [2] conjectured that any plane graph of maximum degree ∆ is entirely (∆ + 4)-colorable and proved this
conjecture for∆ = 3 [3]. In [4], it is proved that the conjecture is true if∆ ≥ 6. More recently, Wang and Zhu [6] completely
settled the conjecture. For the list version of entire coloring, Wang and Lih [5] conjectured that every plane graph is entirely
(∆ + 4)-choosable. They proved this conjecture for ∆ ≥ 12 and also proved that every plane graph with ∆ ≥ 9 is entirely
(∆ + 5)-choosable.

In this note, we prove the following results.
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Theorem 1.1. Every plane graph with maximum degree ∆ ≥ 7 is entirely (∆ + 4)-choosable.

Theorem 1.2. Every plane graph with maximum degree ∆ ≥ 6 is entirely (∆ + 5)-choosable.

For convenience,we introduce the following terminology. A partial (entire) coloring is an entire coloring, except that some
elements may not be colored. Given a partial coloring of G, a color α is forbidden to an element x ∈ V (G) ∪ E(G) ∪ F(G) if α
appears on another element ywhich is adjacent or incident with x. Let f = [uvw] be a 3-face of Gwith d(u) ≥ d(v) ≥ d(w).
If d(w) = 4, then f is called a bad 3-face and uw and vw are called special edges. We use F3(v) and n3(v) to denote the set
of incident 3-faces and the number of adjacent 3-vertices of a vertex v, respectively.

2. Proof of Theorem 1.1

In this section, a 5-vertex v is called bad if |F3(v)| = 5. Moreover, we use F ′

3(v) to denote the set of bad 3-faces incident
with v. Similarly, we use F ′′

3 (v) to denote the set of incident 3-faces of a vertex v such that every 3-face in F ′′

3 (v) is incident
with a bad 5-vertex.

We will prove Theorem 1.1 by contradiction. Hence, we suppose that G is a counterexample to Theorem 1.1 with
σ(G) = |E(G)| + |V (G)| as minimal as possible. That is, there exists a list assignment L with |L(x)| = ∆ + 4 for all
x ∈ V (G) ∪ E(G) ∪ F(G) such that G is not entirely (∆ + 4)-choosable.

We first prove some structural lemmas about the minimal counterexample.

Lemma 2.1. δ(G) ≥ 3.

Proof. Assume that G contains a 2−-vertex v. If d(v) = 1, assume u is the neighbor of v. By the minimality of G, G′
= G − v

admits an entirely (∆ + 4)-coloring φ from its lists, which is also a partial coloring of G. Note that v and uv are uncolored.
By simply counting, at most ∆ + 1 colors are forbidden to uv and three colors are forbidden to v. We can easily extend φ of
G′ to G.

Now, assume that d(v) = 2 and u, w be the neighbors of v. Let f1 and f2 be the two faces incident with v. If both d(f1) ≥ 5
and d(f2) ≥ 5, we contract uv to u and obtain G′. By the choice of G, G′ admits an entire (∆ + 4)-coloring φ from its lists
which induces a partial entire coloring of Gwith v and uv uncolored. Note that at most ∆+ 3 colors are forbidden to uv, we
first properly color uv. Since at most six colors are forbidden to v, v can receive a proper color. Therefore, by symmetry, we
assume that d(f1) ≤ 4. By the choice of G, G′

= G − uv is entirely (∆ + 4)-choosable, except that f1 and uv uncolored. We
erase the color on v, then sequentially assign uv,f1 and v proper colors from its lists and obtain an entire list coloring of G.
Therefore, δ(G) ≥ 3. �

Lemma 2.2. If f = [uvw] is a 3-face of G, then min{d(u), d(v), d(w)} ≥ 4.

Proof. Suppose that d(v) = 3 and N(v) = {x, u, w}. Consider G − vw. G − vw admits an entire coloring using (∆ + 4)
colors. First we erase the color assigned on v and we obtain a partial entire list coloring of G with f , vw and v uncolored.
Note that at most ∆ + 3 colors are forbidden to vw, we can properly color vw. Then we give proper colors to v and f in
sequence to extend this partial coloring to the whole graph. �

Lemma 2.3. Let f = [uvw] be a 3-face of G with d(u) ≥ d(v) ≥ d(w). If d(w) = 4, then d(u) = d(v) = ∆.

Proof. Suppose that d(u) ≤ ∆ − 1. By the minimality of G, G − wu is entirely (∆ + 4)-choosable. Let φ be such a coloring
of G − wu from its lists, φ is a partial entire coloring of Gwith wu, f uncolored. We erase the color on w and properly color
wu. Note that under φ, at most ∆ + 3 colors are forbidden to uw, thus the above is possible. Then we properly color w and
f sequentially. Hence, φ can be extended to the whole graph. �

Lemma 2.4. Let f = [uvwx] be a 4-face of G. If d(x) = 3, then d(u) = d(w) = ∆.

Proof. W.l.o.g, suppose that d(u) ≤ ∆ − 1. Let f1 be the adjacent face of f sharing the common edge xu. By the choice of
G, G − ux admits an entire coloring φ using (∆ + 4) colors, which is a partial coloring of G with f , xu uncolored. Let φ1 be
the coloring induced from φ by erasing the color assigned on x. We will extend φ1 to the whole graph as follows. First we
properly color f note that at most 10 colors are forbidden to f . Then we color xu and x in sequence. By simply counting, at
most ∆ + 3 colors are forbidden to xu and nine colors are forbidden to x. �

Lemma 2.5. G contains no two adjacent bad 3-faces sharing a special edge.

Proof. Suppose that f1 = [xyu] and f2 = [xyv] are two bad 3-faces sharing the special edge xy. By definition, assume that
d(x) = 4. Consider G − xy. Assume f = xvyu be the new face by deleting xy. By the choice of G, G − xy admits an entire
coloring φ from its list using (∆ + 4) colors. To extend φ to the whole graph G, we first erase the color assigned on x and f
to obtain a partial coloring of G with xy, x, f1 and f2 uncolored. Then we properly color xy, x, f1 and f2 sequentially. With a
similar discussion on the above lemma, we can obtain an entire list coloring of G, a contradiction. �



Download English Version:

https://daneshyari.com/en/article/421236

Download Persian Version:

https://daneshyari.com/article/421236

Daneshyari.com

https://daneshyari.com/en/article/421236
https://daneshyari.com/article/421236
https://daneshyari.com

