

Contents lists available at SciVerse ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Note

A note on entire choosability of plane graphs

Wei Dong*

School of Mathematics and Information Technology, Nanjing XiaoZhuang University, Nanjing, 211171, China

ARTICLE INFO

Article history:
Received 15 October 2010
Received in revised form 8 December 2011
Accepted 15 December 2011
Available online 9 January 2012

Keywords: Entire coloring Plane graph List coloring

ABSTRACT

A plane graph is called entirely k-choosable if for any list assignment L such that |L(x)| = k for each $x \in V(G) \cup E(G) \cup F(G)$, we can assign each element x a color from its list such that any two elements that are adjacent or incident receive distinct colors. Wang and Lih (2008) [5] conjectured that every plane graph is entirely $(\Delta + 4)$ -choosable and showed that the conjecture is true if $\Delta \geq 12$. In this note, we prove that (1) Every plane graph G with $G \geq 1$ is entirely $G \geq 1$ is entirely $G \geq 1$. Every plane graph $G \geq 1$ is entirely $G \geq 1$.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Graphs considered in this note are finite, simple and undirected. Unless stated otherwise, we follow the notations and terminology in [1].

For a plane graph G, we denote its vertex set, edge set, face set, and minimum degree by V(G), E(G), F(G) and $\delta(v)$, respectively. For a vertex v, $d_G(v)$ and $N_G(v)$ denote its degree and the set of its neighbors in G, respectively.

We use b(f) to denote the boundary walk of a face f and write $f = [v_1v_2v_3 \cdots v_n]$ if $v_1, v_2, v_3, \ldots, v_n$ are the vertices of b(f) in cyclic order. The *degree*, d(f), of a face f is the number of edges in its boundary b(f), cut edges being counted twice. A k-vertex (or k-face) is a vertex (or a face) of degree k, a k-vertex (or k-face) is a vertex (or a face) of degree at most k, and a k+-vertex (or k+-face) is defined similarly.

Two faces of a plane graph are said to be *adjacent* if they have at least one common boundary edge. For $x \in V(G) \cup F(G)$, we use $F_k(x)$ and $V_k(x)$ to denote the set of all k-faces and k-vertices that are incident or adjacent to x, respectively. For $f \in F(G)$, we write $f = [u_1u_2 \cdots u_n]$ if u_1, u_2, \ldots, u_n are on the boundary of f in clockwise order.

A *k*-coloring of *G* is a mapping ϕ from V(G) to a set of size *k* such that $\phi(x) \neq \phi(y)$ for any adjacent vertices *x* and *y*. A graph is *k*-colorable if it has a *k*-coloring.

A list-assignment L to the vertices of G is an assignment of a set L(v) of colors to vertex v for every $v \in V(G)$. If G has a coloring ϕ such that $\phi(v) \in L(v)$ for all vertices v, then we say that G is L-colorable or ϕ is an L-coloring of G. We say that G is L-colorable (or L-colorable) if it is L-colorable for every list-assignment L satisfying L(v) = k for all vertices v.

An *entire coloring* of a plane graph G is a coloring of the faces, vertices, and edges of G, which we call the elements of G, so that all incident or adjacent elements receive distinct colors; an entire list-coloring is defined analogously. In 1972, Kronk and Mitchem [2] conjectured that any plane graph of maximum degree Δ is entirely ($\Delta+4$)-colorable and proved this conjecture for $\Delta=3$ [3]. In [4], it is proved that the conjecture is true if $\Delta\geq 6$. More recently, Wang and Zhu [6] completely settled the conjecture. For the list version of entire coloring, Wang and Lih [5] conjectured that every plane graph is entirely ($\Delta+4$)-choosable. They proved this conjecture for $\Delta\geq 12$ and also proved that every plane graph with $\Delta\geq 9$ is entirely ($\Delta+5$)-choosable.

In this note, we prove the following results.

E-mail addresses: weidong@njxzc.edu.cn, weidong_79@hotmail.com.

^{*} Fax: +86 02586178251.

Theorem 1.1. Every plane graph with maximum degree $\Delta > 7$ is entirely $(\Delta + 4)$ -choosable.

Theorem 1.2. Every plane graph with maximum degree $\Delta > 6$ is entirely $(\Delta + 5)$ -choosable.

For convenience, we introduce the following terminology. A partial (entire) coloring is an entire coloring, except that some elements may not be colored. Given a partial coloring of G, a color α is forbidden to an element $x \in V(G) \cup E(G) \cup F(G)$ if α appears on another element g which is adjacent or incident with g. Let g is a 3-face of g with g with g with g is called g and g and g are called special edges. We use g and g and g is called g and g to denote the set of incident 3-faces and the number of adjacent 3-vertices of a vertex g, respectively.

2. Proof of Theorem 1.1

In this section, a 5-vertex v is called bad if $|F_3(v)| = 5$. Moreover, we use $F'_3(v)$ to denote the set of bad 3-faces incident with v. Similarly, we use $F''_3(v)$ to denote the set of incident 3-faces of a vertex v such that every 3-face in $F''_3(v)$ is incident with a bad 5-vertex.

We will prove Theorem 1.1 by contradiction. Hence, we suppose that G is a counterexample to Theorem 1.1 with $\sigma(G) = |E(G)| + |V(G)|$ as minimal as possible. That is, there exists a list assignment L with $|L(x)| = \Delta + 4$ for all $x \in V(G) \cup E(G) \cup F(G)$ such that G is not entirely $(\Delta + 4)$ -choosable.

We first prove some structural lemmas about the minimal counterexample.

Lemma 2.1. $\delta(G) \geq 3$.

Proof. Assume that G contains a 2^- -vertex v. If d(v)=1, assume u is the neighbor of v. By the minimality of G, G'=G-v admits an entirely $(\Delta+4)$ -coloring ϕ from its lists, which is also a partial coloring of G. Note that v and uv are uncolored. By simply counting, at most $\Delta+1$ colors are forbidden to uv and three colors are forbidden to v. We can easily extend ϕ of G' to G.

Now, assume that d(v)=2 and u,w be the neighbors of v. Let f_1 and f_2 be the two faces incident with v. If both $d(f_1)\geq 5$ and $d(f_2)\geq 5$, we contract uv to u and obtain G'. By the choice of G, G' admits an entire $(\Delta+4)$ -coloring ϕ from its lists which induces a partial entire coloring of G with v and uv uncolored. Note that at most $\Delta+3$ colors are forbidden to uv, we first properly color uv. Since at most six colors are forbidden to v,v can receive a proper color. Therefore, by symmetry, we assume that $d(f_1)\leq 4$. By the choice of G, G'=G-uv is entirely $(\Delta+4)$ -choosable, except that f_1 and uv uncolored. We erase the color on v, then sequentially assign $uv f_1$ and v proper colors from its lists and obtain an entire list coloring of G. Therefore, $\delta(G)\geq 3$. \square

Lemma 2.2. If f = [uvw] is a 3-face of G, then $\min\{d(u), d(v), d(w)\} \ge 4$.

Proof. Suppose that d(v) = 3 and $N(v) = \{x, u, w\}$. Consider G - vw. G - vw admits an entire coloring using $(\Delta + 4)$ colors. First we erase the color assigned on v and we obtain a partial entire list coloring of G with f, vw and v uncolored. Note that at most $\Delta + 3$ colors are forbidden to vw, we can properly color vw. Then we give proper colors to v and f in sequence to extend this partial coloring to the whole graph. \Box

Lemma 2.3. Let f = [uvw] be a 3-face of G with d(u) > d(v) > d(w). If d(w) = 4, then $d(u) = d(v) = \Delta$.

Proof. Suppose that $d(u) \leq \Delta - 1$. By the minimality of G, G - wu is entirely $(\Delta + 4)$ -choosable. Let ϕ be such a coloring of G - wu from its lists, ϕ is a partial entire coloring of G with wu, f uncolored. We erase the color on w and properly color wu. Note that under ϕ , at most $\Delta + 3$ colors are forbidden to uw, thus the above is possible. Then we properly color w and f sequentially. Hence, ϕ can be extended to the whole graph. \Box

Lemma 2.4. Let f = [uvwx] be a 4-face of G. If d(x) = 3, then $d(u) = d(w) = \Delta$.

Proof. W.l.o.g, suppose that $d(u) \leq \Delta - 1$. Let f_1 be the adjacent face of f sharing the common edge xu. By the choice of G, G - ux admits an entire coloring ϕ using $(\Delta + 4)$ colors, which is a partial coloring of G with f, xu uncolored. Let ϕ_1 be the coloring induced from ϕ by erasing the color assigned on x. We will extend ϕ_1 to the whole graph as follows. First we properly color f note that at most 10 colors are forbidden to f. Then we color f and f in sequence. By simply counting, at most f 2 colors are forbidden to f 3 colors are forbidden to f 4 colors are forbidden to f 5 colors are forbidden to f 6 colors are forbidden to f 7 colors are forbidden to f 8 colors are forbidden to f 8

Lemma 2.5. *G* contains no two adjacent bad 3-faces sharing a special edge.

Proof. Suppose that $f_1 = [xyu]$ and $f_2 = [xyv]$ are two bad 3-faces sharing the special edge xy. By definition, assume that d(x) = 4. Consider G - xy. Assume f = xvyu be the new face by deleting xy. By the choice of G, G - xy admits an entire coloring ϕ from its list using ($\Delta + 4$) colors. To extend ϕ to the whole graph G, we first erase the color assigned on X and Y to obtain a partial coloring of Y0 with Y1, Y2, Y3 and Y4 uncolored. Then we properly color Y3, Y4, Y5 and Y5 sequentially. With a similar discussion on the above lemma, we can obtain an entire list coloring of Y6, a contradiction. \Box

Download English Version:

https://daneshyari.com/en/article/421236

Download Persian Version:

https://daneshyari.com/article/421236

<u>Daneshyari.com</u>