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a b s t r a c t

For a graph G in read-only memory on n vertices and m edges and a write-only output
buffer, we give two algorithms using only O(n) rewritable space. The first algorithm lists
all minimal a − b separators of G with a polynomial delay of O(nm). The second lists all
minimal vertex separators of Gwith a cumulative polynomial delay of O(n3m).
One consequence is that the algorithms can list the minimal a − b separators (and

minimal vertex separators) spending O(nm) time (respectively, O(n3m) time) per object
output.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Finding all minimal a− b separators – that is, minimal sets of vertices whose deletion from a graph disconnects vertices
a and b – is a problem relevant to the study of listing algorithms [7,8,11], network flow, formal concept analysis [4], and the
treewidth of a graph [5,6].
We describe a simple backtracking algorithm for listing all the minimal a − b separators in a graph G = (V , E) with n

vertices andm edges. This graph, of size n+m, is given in read-onlymemory, and the output is sent to the write-only buffer.
By creating a backtracking tree of height at most n, the algorithmworks with a polynomial delay of O(nm) and uses O(n)

rewritable space, using atmostO(n log n) bits to perform its computations. Since the space necessary to store a graph (either
as an adjacency list or matrix) is at least Ω(n log n) bits, this algorithm is space-optimal within a multiplicative constant.
We also provide a related backtracking algorithm that can list all minimal vertex separators in a graph with cumulative
polynomial delay of O(n3m) and again using O(n) rewritable space. To achieve this space complexity, these algorithms
avoid using a data structure to store previously output objects, and thus all objects that the algorithm outputs can be sent
to a write-only memory buffer. This is important given that a graph may have an exponential number of minimal a − b
separators (e.g., consider a graph withΘ(n) edge-disjoint paths of length 3 between vertices a and b).
One consequence of the algorithms’ time complexity is that both algorithms work in polynomial total time. That is to

say, the amount of time spent per object output is polynomial in the input size. The first and second algorithms list the
minimal a−b separators (minimal vertex separators) spending atmostO(nm) (respectively,O(n3m)) time per object output.
We describe these standards for efficient listing algorithms and how they are related further in Section 2.1. (For more on
cumulative polynomial delay, see [7, p. 8]; for polynomial delay, see [8].)
Both algorithms differ from results by Shen and Liang [10] and Berry et al. [2] in that their algorithms have superior total

polynomial time complexity and spend at most O(n2) time per object, but have greater space complexity, using Ω(n|S|)
space (where |S| is the total number of minimal a− b separators to be output).
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For a specific class of graphs related to formal concept analysis – namely cobipartite graphs – Berry and Sigayret [4]
provide an algorithm to list all minimal vertex separators using polynomial space. (Berry et al. [3] state that this algorithm
uses at most O(n ·min(m,

( n
2

)
−m)) space and spends at most O(min(m,

( n
2

)
−m)) time per separator where n = |V | and

m = |E|.) In comparison, the algorithms presented in this paper work on general graphs and use less space and more time.
Before presenting the technical details, we first describe the backtracking approach in very general terms. The algorithm

makes use of the relationship between (1) minimal a− b separators and (2) connected induced subgraphs that contain the
vertex a (see Lemma 1 for details). In specific, the algorithm constructs a simple backtracking tree to list these subgraphs
and then uses propositions and lemmas described in Sections 2 and 3 to prune barren subtrees from the backtracking tree
(i.e., subtrees that contain no newobjects to be output). In doing so, the algorithm combines two techniques: (1) an approach
Tsukiyama et al. [12] used to list the minimal cutsets of a graph by growing a connected component around a vertex a and
(2) a generalization of the concept of a separator close to a vertex, introduced by Kloks and Kratsch [9].
The rest of the paper gives the details as follows: a brief discussion of standards for efficient listing and relevant graph

theoretical terms, propositions, and lemmas are presented in Sections 2 and 3. Section 4 describes how one can create an
efficient backtracking tree for which we can determine whether a node in the tree contains new objects to output or not.
Sections 5 and 6 present the pseudocode and proofs for the two algorithms. Further remarks are in the last section.

2. Preliminaries

2.1. Standards for listing algorithms

Because a graph may have an exponential number of minimal a− b separators, there is no algorithm that can always list
these in O(Nk) time where N is the input size and k is a constant. Below we discuss standards for efficient listing in which
the running time depends on the size of both the input and the output and describe how these standards are relevant to the
algorithms in this paper. We also discuss standards for space complexity.

Definition 1. A listing algorithm is said to run with polynomial delay if it spends at most O(Nk) time

(1) between the start of the program and either producing the first object to be output or halting with no output, and
(2) between outputting one object and either producing the next object or halting.

Our algorithm to list the minimal a− b separators works with polynomial delay. Thus, with a delay of at most O(nm) time,
our algorithm is guaranteed to output a new object or to halt. A weaker standard of listing complexity is the following:

Definition 2. A listing algorithm runs in polynomial total time if it outputs at least one object and spends at most O(Nk)
time per object output or halts within O(Nk) time with no output.

With such an algorithm, one may have to wait a superpolynomial amount of time to get the first or any other output. For
an example, consider an algorithm that ultimately outputs 2N objects in rapid succession, but does so after a time delay of
2N . While such a delay indicates that the number of objects that the algorithm outputs eventually is superpolynomial, one
cannot necessarily terminate the algorithm after running the algorithm for a superpolynomial time and outputting only a
polynomial number of objects. Given this limitation, an intermediate standard was proposed in [7] that was weaker than
polynomial delay but stronger than polynomial total time.

Definition 3. A listing algorithm runs with cumulative polynomial delay if it spends at most

(1) O(Nk) time between the start of the program and halting with no output, or
(2) (i+ 1) · O(Nk) time in outputting the first i objects.

Such an algorithm may have a superpolynomial delay, but this can occur only after a superpolynomial number of objects
have been output. Unlike polynomial total time, one avoids the possibility of superpolynomial delays near the beginning
of an algorithm’s run. Our algorithm that lists all minimal vertex separators works with a cumulative polynomial delay of
O(n3m) and illustrates how algorithms of this listing complexity can arise naturally when modifying algorithms that work
with polynomial delay.
These standards are related as follows: poly. delay⊆ cumulative poly. delay⊆ poly. total time. We also note the following

standard for space complexity:

Definition 4. A listing algorithm runs in polynomial space if it uses at most O(Nk) space.

Our algorithms are polynomial space. In addition, they are also space-optimal in the sense that the rewritable memory that
they require is no greater than a multiplicative constant of the amount of memory needed to store the input in read-only
memory.
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