Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Gerard J. Chang^{a,b,c,*}, Jiaojiao Wu^a, Xuding Zhu^{c,d}

^a Department of Mathematics, National Taiwan University, Taipei 10617, Taiwan

^b Taida Institute for Mathematical Sciences, National Taiwan University, Taipei 10617, Taiwan

^c National Center for Theoretical Sciences, Taiwan

^d Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan

ARTICLE INFO

Article history: Received 21 July 2008 Received in revised form 25 June 2009 Accepted 7 August 2009 Available online 18 September 2009

Keywords: Domination Rainbow domination NP-complete Chordal graph Bipartite graph Algorithm Tree Leaf

1. Introduction

ABSTRACT

This paper studies a variation of domination in graphs called rainbow domination. For a positive integer k, a k-rainbow dominating function of a graph G is a function f from V(G) to the set of all subsets of $\{1, 2, ..., k\}$ such that for any vertex v with $f(v) = \emptyset$ we have $\bigcup_{u \in N_G(v)} f(u) = \{1, 2, ..., k\}$. The 1-rainbow domination is the same as the ordinary domination. The k-rainbow domination problem is to determine the k-rainbow domination number $\gamma_{rk}(G)$ of a graph G, that is the minimum value of $\sum_{v \in V(G)} |f(v)|$ where f runs over all k-rainbow dominating functions of G. In this paper, we prove that the k-rainbow domination graphs. We then give a linear-time algorithm for the k-rainbow domination problem on trees. For a given tree T, we also determine the smallest k such that $\gamma_{rk}(T) = |V(T)|$.

© 2009 Elsevier B.V. All rights reserved.

Domination and its variations in graphs are natural models for the location problems in operations research. They have been extensively studied in the literature; see [4,7,8]. A *dominating set* of a graph *G* is a subset *D* of *V*(*G*) such that every vertex not in *D* is adjacent to some vertex in *D*. The *domination number* γ (*G*) of *G* is the minimum cardinality of a dominating set of *G*. The following variation of domination was introduced by Brešar, Henning and Rall [2].

For a positive integer k, we use [k] to denote the set $\{1, 2, ..., k\}$, and $2^{[k]}$ the set of all subsets of [k]. A k-rainbow dominating function of G is a function $f : V(G) \rightarrow 2^{[k]}$ such that for every vertex v, either $f(v) \neq \emptyset$ or $f(N_G(v)) = [k]$, where $N_G(v) = \{u \in V(G) : uv \in E(G)\}$ and $f(S) = \bigcup_{x \in S} f(x)$ for any subset S of V(G). The weight of f is defined as $w(f) = \sum_{v \in V(G)} |f(v)|$. The k-rainbow domination number $\gamma_{tk}(G)$ of G is the minimum weight of a k-rainbow dominating function. A k-rainbow domination f of G is optimal if $w(f) = \gamma_{tk}(G)$. The k-rainbow domination problem is to determine the k-rainbow domination number of a given graph. Notice that the ordinary domination is the same as the 1-rainbow domination if we view a dominating set D as a 1-rainbow dominating function f defined by $f(v) = \{1\}$ when $v \in D$ and $f(v) = \emptyset$ otherwise.

The *Cartesian product* of two graphs *G* and *H* is the graph $G \square H$ with vertex set $V(G \square H) = V(G) \times V(H)$ and edge set $E(G \square H) = \{(u, v)(u', v') : u = u' \text{ with } vv' \in E(H) \text{ or } uu' \in E(G) \text{ with } v = v'\}$. Rainbow domination of a graph *G* coincides with the ordinary domination of the Cartesian product of *G* with the complete graph, that is $\gamma_{tk}(G) = \gamma(G \square K_k)$ (see [2]).

^{*} Corresponding author at: Department of Mathematics, National Taiwan University, Taipei 10617, Taiwan.

E-mail addresses: gjchang@math.ntu.edu.tw (G.J. Chang), wujj0007@yahoo.com.tw (J. Wu), zhu@math.nsysu.edu.tw (X. Zhu).

⁰¹⁶⁶⁻²¹⁸X/\$ – see front matter 0 2009 Elsevier B.V. All rights reserved. doi:10.1016/j.dam.2009.08.010

Hartnell and Rall [6] established several results on rainbow domination. In particular, it was proved in [6] that

$$\min\{|V(G)|, \gamma(G) + k - 2\} \le \gamma_{\rm rk}(G) \le k\gamma(G)$$

for any $k \ge 2$ and any graph *G*. Their attempt to characterize graphs with $\gamma(G) = \gamma_{r2}(G)$ was inspired by the following famous conjecture by Vizing [9].

Vizing's Conjecture. For any graph *G* and *H*, we have $\gamma(G \Box H) \ge \gamma(G)\gamma(H)$.

One of the related problems posted by Hartnell and Rall [5] is to find classes of graphs that achieve the equality. They showed that $\gamma(G \Box H) = \gamma(G)\gamma(H)$ if *G* is a graph with $\gamma(G) = \gamma_{r2}(G)$ and *H* is a so-called *generalized comb*.

Brešar, Henning and Rall [2] introduced rainbow domination to study the relation with paired-domination; also see [1]. They gave a linear-time algorithm for finding a minimum weighted 2-rainbow dominating function of a tree. On the other hand, Brešar and Šumenjak [3] proved that the 2-rainbow domination problem is NP-complete even when restricted to chordal graphs or bipartite graphs. They also established exact values of the 2-rainbow domination numbers for paths, cycles and suns, and upper and lower bounds for the generalized Petersen graphs.

The purpose of this paper is to study *k*-rainbow domination for a general *k*. In Section 2, we prove that the *k*-rainbow domination problem is NP-complete even when restricted to chordal graphs or bipartite graphs, and then give a linear-time algorithm for the *k*-rainbow domination problem on trees. For a graph *G* on *n* vertices, $\gamma_{ri}(G) \leq \gamma_{ri+1}(G) \leq n$ for any *i* and $\gamma_{rn}(G) = n$. In Section 3, we determine the minimum *k* such that $\gamma_{rk}(T) = |V(T)|$ for any tree *T*.

2. Complexity in k-rainbow domination

In this section, we prove that the *k*-rainbow domination problem is NP-complete even when restricted to chordal graphs or bipartite graphs. We then give a linear-time algorithm for the *k*-rainbow domination problem on trees.

The domination problem is known to be NP-complete not only for general graphs but also for chordal graphs and bipartite graphs and many other classes of graphs; see [4]. This is also the case for the *k*-rainbow domination problem.

Theorem 1. For any positive integer k, the k-rainbow domination problem is NP-complete for general graphs.

Proof. We shall prove the theorem by reducing the *k*-rainbow domination problem to the domination problem. Given a graph *G* on *n* vertices, consider the graph *G'* with the vertex set $V(G') = V(G) \cup \{v_2, v_3, \ldots, v_k : v \in V(G)\}$ and edge set $E(G') = E(G) \cup \{vv_i : v \in V(G), 2 \le i \le k\}$. Namely, we add n(k-1) leaves to *G* by joining k-1 leaves to each vertex of *G* (we call a degree-1 vertex of *G* a *leaf* of *G*). We claim that *G* has a dominating set of cardinality at most *s* if and only if *G'* has a *k*-rainbow dominating function of weight at most s + n(k-1).

Suppose *G* has a dominating set *D* of cardinality at most *s*. Consider the function *f* from V(G') to $2^{[k]}$ defined by

$$f(u) = \begin{cases} \{1\}, & \text{if } u \in D, \\ \emptyset, & \text{if } u \in V(G) - D, \\ \{i\}, & \text{if } u = v_i \text{ for some } v \in V(G) \text{ and } 2 \le i \le k. \end{cases}$$

Suppose $f(u) = \emptyset$. By the definition of $f, u \in V(G) - D$ and so u has a neighbor $v \in D$. Since $f(v) = \{1\}$ and $f(u_i) = \{i\}$ for $2 \le i \le k$, we have $f(N_{G'}(u)) = [k]$. Therefore, f is a k-rainbow dominating function of G'. Also, the weight of f is $|D| + n(k-1) \le s + n(k-1)$.

On the other hand, suppose G' has a k-rainbow dominating function f of weight at most s + n(k - 1). For each $v \in V(G)$, we may assume that $\sum_{2 \le i \le k} |f(v_i)| \le k - 1$ for otherwise if $\sum_{2 \le i \le k} |f(v_i)| \ge k$ then we replace each $f(v_i)$ by $\{i\}$ and add 1 to the set f(v) to obtain a k-rainbow dominating function of weight at most s + n(k - 1). Now, consider the set $D = \{v \in V(G) : f(v) \ne \emptyset\}$. For any vertex $v \in V(G) - D$, we have $f(v) = \emptyset$ and so $f(N_{G'}(v)) = [k]$. As $\sum_{2 \le i \le k} |f(v_i)| \le k - 1$, we have $f(u) \ne \emptyset$ for some $u \in N_G(v)$ which implies $u \in D$. Therefore, D is a dominating set of G. Next, we calculate the cardinality of D. Suppose there are n' vertices $v \in V(G)$ such that $f(v_i) = \emptyset$ for some *i*. For these n' vertices v we have f(v) = [k]. Therefore, the weight of f is at least n'k + (|D| - n') + n'0 + (n - n')(k - 1) = |D| + n(k - 1) implying $|D| + n(k - 1) \le s + n(k - 1)$ and so $|D| \le s$. \Box

Notice that if G is chordal or bipartite, then so is G' in the proof above. We thus have

Corollary 2. For any positive integer k, the k-rainbow domination problem is NP-complete for chordal graphs and for bipartite graphs.

In the rest of this section, we establish a linear-time algorithm for the *k*-rainbow domination problem on trees. For technical reasons, we in fact dealing with a more general problem. A *k*-rainbow assignment is a mapping *L* that assigns each vertex *v* a label $L(v) = (a_v, b_v)$ with $a_v, b_v \in \{0\} \cup [k]$. A *k*-*L*-rainbow dominating function is a function $f : V(G) \rightarrow 2^{[k]}$ such that for every vertex *v* in *G* we have

(L1) $|f(v)| \ge a_v$, and (L2) $|f(N_G(v))| \ge b_v$ whenever $f(v) = \emptyset$. Download English Version:

https://daneshyari.com/en/article/421298

Download Persian Version:

https://daneshyari.com/article/421298

Daneshyari.com