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On encodings of spanning trees
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Abstract

Deo and Micikevicius recently gave a new bijection for spanning trees of complete bipartite graphs. In this paper we devise a
generalization of Deo and Micikevicius’s method, which is also a modification of Olah’s method for encoding the spanning trees
of any complete multipartite graph K(n1, . . . , nr ). We also give a bijection between the spanning trees of a planar graph and those
of any of its planar duals. Finally we discuss the possibility of bijections for spanning trees of DeBriujn graphs, cubes, and regular
graphs such as the Petersen graph that have integer eigenvalues.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Given a graph G = (V , E) with vertices V = V (G) and edges E = E(G), a spanning tree T = (V , E′) of G is
a connected acyclic subgraph of G. One very natural and old problem is to determine the number �(G) of labelled
spanning trees for a fixed graph G, or better yet, a formula for each in a family G = {Gn}∞n=0.

The first and most famous result of this kind is due to Cayley [5], who proved that �(Kn) = nn−2, where Kn is
the complete graph on n vertices. A wonderful collection of many different proofs of this result is found in [16]. The
first bijective method of this result was given by Prüfer [18]. It is possibly the simplest proof of Cayley’s Theorem.
A generalization of Prüfer’s encoding was given by Olah [17] for complete multipartite graphs K(n1, . . . , nr ). This
graph has n=∑r

i=1 ni vertices, partitioned into sets of sizes n1, . . . , nr , and edges between every pair of vertices from
different parts. The encoding proves.

Theorem 1. �(K(n1, . . . , nr )) = nr−2 ∏r
i=1 (n − ni)

ni−1.

Another wonderful bijection for these graphs is found in [10,11], where the authors give a full description of the
q-analog properties of their bijections.

Recently, a new method has been found by Deo and Micikevicius [9] that allows one both to encode and decode a
spanning tree of Kn in such a way that the diameter, center, and radius of the tree can be calculated directly from the
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code without having to resort to other algorithms that operate on the tree itself. In this paper we devise a generalization
of Deo and Micikevicius’s method which is also a modification of Olah’s method for encoding the spanning trees of
any complete multipartite graph K(n1, . . . , nr ).2 Our method shares the benefits of finding the diameter, center, and
radius directly. We describe this method in Section 2.

We discuss the possibility of bijections for spanning trees of integral graphs, such as the Petersen graph and d-
dimensional cubes, and of DeBruijn Graphs in Section 3. We also give a bijection between the spanning trees of a
planar graph and those of any of its planar duals. The section includes some open problems.

2. Complete multipartite graphs

2.1. Encoding a tree

Let T be a fixed spanning tree of K = K(n1, . . . , nr ), and let n = ∑r
j=1 nj be the number of its vertices. Let the

partition of the vertices V given by K be V1, . . . , Vr , where each |Vj | = nj , and define sj = ∑j
i=1 ni . Then we may

assume that Vj = {sj−1 + 1, . . . , sj }. Define V (k) = j , where k ∈ Vj . The code for T will be a set of sequences
C = {C0, C1, . . . , Cr}, where the length of C0 is r − 2 and the length of each Cj (1�j �r) is nj − 1. Thus the total
length of the code is (r − 2) + ∑r

j=1 (nj − 1) = n − 2, as expected. Fig. 1 shows the algorithm E used to encode
T by C. The sequence C0 can contain any of the labels, while every other sequence Cj will contain the labels of the
neighbors, at appropriate stages of the algorithm, of the vertices in Vj (in some specified order). The set of all possible
such codes has cardinality matching the right-hand side of Theorem 1. When k is a leaf of T denote its unique neighbor
in T by k+.

Fig. 2 shows an example of E encoding a tree T.

Proposition 2. Algorithm E is injective.

Proof. For a given tree T and for 0� t �radius(T ) denote by T (t) the subgraph of T induced by the vertices Qt

⋃t−1
j=0

(Qj ∪ nbhd(Qj )), where nbhd(W) is the set of vertices adjacent to some vertex of W. Suppose that Algorithm E
encodes the trees T1 and T2 by the same code C. According to E any vertex that does not appear in C is a leaf, and
so T1 and T2 have the same set of leaves; i.e. Q0(T1) = Q0(T2) and T

(0)
1 = T

(0)
2 . Using induction we will assume

that Qt−1(T1) = Qt−1(T2) and T
(t−1)
1 = T

(t−1)
2 for some t > 0. Because C encodes both trees, the neighbors of Qt−1

are determined by C and so T
(t)
1 = T

(t)
2 . This also determines the leaves in the remaining tree at this stage, and so

Qt(T1) = Qt(T2). Hence T1 = T2. �

2.2. Decoding a sequence

Suppose C is a code satisfying the conditions described in Section 2.1. We describe Algorithm D (see Fig. 3), which
constructs from C the tree T that Algorithm E encodes as C. Values of the n-tuple U are initialized in the loop at line 2
to one less than the degrees of the vertices so that the leaves become evident, forming the queue Q0 (we set n0 = r − 1)
in the loop at line 3. The process of constructing T is facilitated by the iterative construction in the loop at line 5 of each
queue Q1, Q2, . . ., essentially reproducing them in the same manner done by E. The variables k and k′ are redefined
each time they are removed; that is, in line 5(a)i for example, k is defined to be the head of Qj and then it is removed.

Proposition 3. Algorithm D is injective.

Proof. By the above discussion, Algorithm D is the realization of the argument given in the proof of Proposition 2.
Hence Algorithm D is the inverse of Algorithm E. �

2 It is worth correcting a small typographical error that appears in Deo and Micikevicius’s paper: In each of lines 4 and 5 of Fig. 3 in [9] the
variable used[i] should be replaced by used[C(i)].
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