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Abstract

We consider the coloring problem for mixed graphs, that is, for graphs containing edges and arcs. A mixed coloring c is a coloring
such that for every edge [xi, xj ], c(xi) �= c(xj ) and for every arc (xp, xq), c(xp) < c(xq). We will analyse the complexity status of
this problem for some special classes of graphs.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Scheduling problems containing incompatibility constraints are very often modelled by undirected graphs: every
vertex corresponds to a job and two vertices are joined by an edge if the corresponding jobs cannot be processed at
the same period. A vertex coloring of the graph then gives a possible schedule respecting the constraints. In general
scheduling problems, there are often more requirements than just incompatibility constraints. Hence the ordinary
coloring model is too limited to be useful in many scheduling applications. We will consider here scheduling problems
containing incompatibility and precedence constraints: several pairs of jobs have to be processed in a given order. To
handle these problems, we have to introduce a more general model, able to take into account these requirements: mixed
graphs. These graphs have been introduced for the first time in [11].

A mixed graph GM = (X, U, E) is a graph containing edges (set E) and arcs (set U). An edge joining vertices xi

and xj will be denoted by [xi, xj ] and an arc with tail xp and head xq by (xp, xq). Thus a precedence constraint,
saying that job p must be processed before job q, will be represented by an arc (xp, xq). A k-coloring of a mixed graph
GM = (X, U, E) is a function c: X → {0, 1, . . . , k −1} such that for [xi, xj ] ∈ E, c(xi) �= c(xj ) and for (xp, xq) ∈ U ,
c(xp) < c(xq). Notice that the mixed graph GM must be acyclic, i.e. must not contain any directed circuit, otherwise
no proper k-coloring would exist. Also notice that there is a one-to-one correspondence between a feasible schedule in
k time units and a k-coloring of the mixed graph GM. The smallest k such that there exists a k-coloring of GM is called
the mixed chromatic number and will be denoted by �(GM). Let G0

M = (V , U, ∅) be the directed partial graph of GM.
If �(G0

M) denotes the chromatic number of G0
M, that is, the length of a longest directed path in G0

M plus one, then we
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conclude that �(GM)��(G0
M). In this paper we only consider finite mixed graphs GM containing no directed circuits,

no multiple edges or multiple arcs and no loops.
Obviously, coloring the vertices of a mixed graph is more general than the ordinary vertex coloring problem and

thus it is NP-complete. There is not much literature about mixed graph coloring. In [3], an O(n2)-algorithm to color
optimally mixed trees and bounds on the mixed chromatic number for general mixed graphs are given. For mixed
bipartite graphs, the mixed chromatic number is bounded above by �(G0

M) + 1 and hence can only take two values.
In [3] an open question is the complexity to decide whether it is �(G0

M) or �(G0
M) + 1 for mixed bipartite graphs.

Rote has shown with an elementary construction that this problem is NP-complete [8]. Here, we will strengthen this
result by proving that it is NP-complete even for planar bipartite graphs and for bipartite graphs with maximum degree
3. In [9,10] the unit-time job-shop problem is considered via mixed graph coloring. In this case, G0

M is the union of
disjoint paths and (V , ∅, E) is the union of disjoint cliques. In [10] three branch-and-bound algorithms are developed
and tested on randomly generated mixed graphs of order at most 200 for the exact solution and of order at most 900
for the approximate solution. In [12] mixed graph colorings � for which an arc (xp, xq) implies that �(xp)��(xq) are
considered.

In this paper, we will consider some special classes of graphs and analyse the complexity status of the mixed graph
coloring problem for these classes.

2. Some complexity results

First, we will give some definitions taken from [3] which we will use throughout this paper.
Definitions: Let GM = (X, U, E) be a mixed graph. The inrank of a vertex xi , denoted by in(xi), is the length of a

longest directed path ending at xi and the outrank of xi , denoted by out(xi), is the length of a longest directed path
starting at xi .

We denote by n the number of vertices in a mixed graph GM = (X, U, E), i.e. n = |X|, and by N(P ) the number of
vertices on a directed path P.

All graph theoretical terms not defined here can be found in [1].
We will give now some complexity results for some special classes of graphs.

Theorem 1. Let GM be a mixed graph having the following properties:

(1) for all xi ∈ X, there exists xj ∈ X such that (xi, xj ) ∈ U or (xj , xi) ∈ U ;
(2) for all maximal directed paths P in GM, N(P ) = �(G0

M) or N(P ) = �(G0
M) − 1.

Then deciding whether �(GM) = �(G0
M) or �(GM) > �(G0

M) can be done in polynomial time.

Proof. We transform the problem into a 2SAT problem which is known to be polynomially solvable [2]. Denote by
P the set of vertices belonging to a path P with N(P ) = �(G0

M).

(1) to each vertex x ∈ P with in(x) = r , we associate a variable xr and a clause (xr);
(2) to each vertex x /∈P with in(x) = r , we associate two variables xr and xr+1;
(3) to each path P =(x0, x1, . . . , x�(G0

M)−2) with N(P )=�(G0
M)−1, we associate the clauses (xi

i ∨xi
i+1), (x̄

i
i ∨ x̄i

i+1),

for i = 0, 1, . . . , �(G0
M) − 2, and the clause (x̄

j
j+1 ∨ x̄

j+1
j+1), for j = 0, 1, . . . , �(G0

M) − 3;
(4) to each edge [x, y] ∈ E such that x ∈ P, y /∈P and in(x) = in(y) = r (resp. in(x) = in(y) + 1 = r + 1), we

associate the clause (x̄r ∨ ȳr ) (resp. (x̄r+1 ∨ ȳr+1));
(5) to each edge [x, y] ∈ E such that x, y /∈P and in(x) = in(y) = r (resp. in(x) = in(y) + 1 = r + 1), we associate

the clauses (x̄r ∨ ȳr ), (x̄r+1 ∨ ȳr+1) (resp. (x̄r+1 ∨ ȳr+1));
(6) to each edge [x, y] ∈ E such that x, y ∈ P and in(x) = in(y) = r , we associate the clause (x̄r ∨ ȳr ).

Suppose that an instance of 2SAT is true. If a variable xr is set to be ‘true’, then we will color the corresponding
vertex x with color r, i.e. c(x) = r . Notice that each vertex x ∈ P will be colored with c(x) = in(x) (see (1)) and each
vertex x /∈P will be colored with c(x) = in(x) or c(x) = in(x) + 1 (see (2) and (3)). Thus, the coloring uses at most
�(G0

M) colors. The clauses in (1) and (3) ensure that for all (x, y) ∈ U we have c(x) < c(y) and the clauses in (1), (4),
(5) and (6) ensure that for all [x, y] ∈ E, c(x) �= c(y). So we conclude that �(GM) = �(G0

M).
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