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Abstract

In this paper, a structural theorem about toroidal graphs is given that strengthens a result of Borodin on plane graphs. As a
consequence, it is proved that every toroidal graph without adjacent triangles is (4, 1)*-choosable. This result is best possible in the
sense that K7 is a non-(3, 1)*-choosable toroidal graph. A linear time algorithm for producing such a coloring is presented also.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

All graphs considered are finite and simple. A torus is a closed surface (compact, connected 2-manifold without
boundary) that is a sphere with a unique handle, and a toroidal graph is a graph embedable in the torus. For a toroidal
graph G, we still use G to denote an embedding of G in the torus.

Let G=(V, E, F) be atoroidal graph, where V, E and F' denote the sets of vertices, edges and faces of G, respectively.
We use Ng(v) and dg (v) to denote the set and number of vertices adjacent to a vertex v, respectively, and use J(G) to
denote the minimum degree of G. A face of an embedded graph is said to be incident with all edges and vertices on its
boundary. Two faces are adjacent if they share a common edge. The degree of a face f of G, denoted also by dg (f),
is the length of the closed walk bounding fin G. When no confusion may occur, we write N (v), d(v), d(f) instead of
Ng(v),dg(v),dc(f). A k-vertex (or k-face) is a vertex (or face) of degree k, a k™ -vertex (or k~-face) is a vertex (or
face) of degree at most k, and a k™ -vertex (or k*-face) is a vertex (or face) of degree at least k. For f € F(G), we write
f=luruy...uy)ifuy, us, ..., u, are the vertices clockwisely lying on the boundary of f. An n-face [ujusru3 ... u,]
is called an (my, mo, ..., my)-face if d(u;) =m; fori =1, 2, ..., n. An n-circuit is a circuit with exactly n edges.

In [7], Lebesgue proved a structural theorem about plane graphs that asserts that every 3-connected plane graph
contains a vertex of given properties (see of [5, Theorem 2]). There are many analogous results appeared since then
[1-3,5,10,14]. In this paper, we consider the structure of toroidal graphs, and prove a Lebesgue type theorem that
strengthens a result given by Borodin in [2].
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Theorem 1. Let G be a connected toroidal graph. Then, one of the following holds:

(1) G contains two adjacent 3-faces.
(2) 4(G) <4.

(3) G contains two adjacent 4-vertices.
(4) G contains a (4,5, 5)-face.

A list assignment of G is a function L that assigns a list L(v) of colors to each vertex v € V(G). An L-coloring with
impropriety d for integer d >0, or simply an (L, d)*-coloring, of G is a mapping ¢ that assigns a color ¢(v) € L(v) to
each vertex v € V(G) such that v has at most d neighbors colored with ¢(v). For integers m >d >0, a graph is called
(m, d)*-choosable, if G admits an (L, d)*-coloring for every list assignment L with |L(v)| = m for all v € V(G). An
(m, 0)*-choosable graph is simply called m-choosable.

The notion of list improper coloring was introduced independently by Skrekovski [11] and Eaton and Hull [4]. They
proved that every planar graph is (3, 2)*-choosable and every outerplanar graph is (2, 2)*-choosable. In [8], it was
proved that every plane graph without 4-circuits and /-circuits for some [ € {3, 6, 7} is (3, 1)*-choosable.

The distances of two triangles 77 and 7> is defined to be the length of a shortest path connecting a vertex of 77 to a
vertex of 7>. Lam et al. [6] showed that every plane graph without triangles of distance less than 2 is (4m, m)-choosable.
Xu [13,14] proved that every graph, that can be embedded into a surface of non-negative characteristic and contains no
triangles of distance zero, is (4m, m)-choosable. Wang et al. [12], independently, proved that every plane graph without
triangles of distance zero is 4-choosable. Lam et al. [6], and Wang and Lih [12] independently, proposed a conjecture
that claims that every plane graph without adjacent triangles is 4-choosable. This conjecture is still open.

In this paper we relax this conjecture and prove, as a consequence of Theorem 1, that every toroidal graph G without
adjacent triangles is (4, 1)*-choosable, and we also give a linear time algorithm for producing an (L, 1)*-coloring for
an arbitrary given list assignment L with |L(v)| >4 for every v € V(G).

Theorem 2. Let G be a toroidal graph without adjacent triangles. Then G is (4, 1)*-choosable.

Since K7 is a toroidal graph, and it is not (L, 1)*-choosable for L(v) = {1, 2, 3} for each of its vertices v, Theorem 2
is best possible in this sense.

In Section 2, we give the proofs of our theorems. According to the proof of Theorem 2, a linear time algorithm is
given in Section 3.

2. Proofs of the theorems

Proof of Theorem 1. Assume to the contrary that the theorem is false. Let G be a connected toroidal graph with the
properties that G contains no adjacent 3-faces, 6(G) >4, every 4-vertex is adjacent to only 5T -vertices, and every 3-face
isnot a (4, 5, 5)-face. The Euler’s formula |V| 4 |F| — | E| >0 can be rewritten in the following form:

3 {—3"ig(v)—1}+ 3 {dGS(f)—l}@. (1)

veV(G) veF(G)

Let o be a weight on V(G) U F(G) by defining w(v) = (3 - d(v)/10) — 1 if v € V(G), and o(f) = (d(f)/5) — 1
if f € F(G). Then the total sum of the weights is no more than zero. To prove Theorem 1, we will introduce some
rules to transfer weights between the elements of V(G) U F(G) so that the total sum of the weights is kept constant
while the transferring is in progress. However, once the transferring is finished, we can show that the resulting weight
o' satisfying Y .y G ur ) @ (v) > 0. This contradiction to (1) will complete the proof.

Our transferring rules are as follows:

(R1) A 4-vertex transfers % to each incident 3-face or 4-face.
(R>) A 5t-vertex transfers 47—0 to each incident 3-face.
(R3) A 5-vertex transfers % to each incident 4-face.

(R4) A 6T-vertex transfers % to each incident 4-face.
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