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Note

Every toroidal graph without adjacent triangles is (4, 1)∗-choosable

Baogang Xua,1, Haihui Zhanga,b

aSchool of Mathematics and Computer Science, Nanjing Normal University, Nanjing 210097, China
bDepartment of Mathematics, Huaiyin Teachers College, Huaian 223001, China

Received 18 December 2003; received in revised form 4 December 2005; accepted 7 April 2006
Available online 5 September 2006

Abstract

In this paper, a structural theorem about toroidal graphs is given that strengthens a result of Borodin on plane graphs. As a
consequence, it is proved that every toroidal graph without adjacent triangles is (4, 1)∗-choosable. This result is best possible in the
sense that K7 is a non-(3, 1)∗-choosable toroidal graph. A linear time algorithm for producing such a coloring is presented also.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

All graphs considered are finite and simple. A torus is a closed surface (compact, connected 2-manifold without
boundary) that is a sphere with a unique handle, and a toroidal graph is a graph embedable in the torus. For a toroidal
graph G, we still use G to denote an embedding of G in the torus.

Let G=(V , E, F ) be a toroidal graph, where V, E and F denote the sets of vertices, edges and faces of G, respectively.
We use NG(v) and dG(v) to denote the set and number of vertices adjacent to a vertex v, respectively, and use �(G) to
denote the minimum degree of G. A face of an embedded graph is said to be incident with all edges and vertices on its
boundary. Two faces are adjacent if they share a common edge. The degree of a face f of G, denoted also by dG(f ),
is the length of the closed walk bounding f in G. When no confusion may occur, we write N(v), d(v), d(f ) instead of
NG(v), dG(v), dG(f ). A k-vertex (or k-face) is a vertex (or face) of degree k, a k−-vertex (or k−-face) is a vertex (or
face) of degree at most k, and a k+-vertex (or k+-face) is a vertex (or face) of degree at least k. For f ∈ F(G), we write
f = [u1u2 . . . un] if u1, u2, . . . , un are the vertices clockwisely lying on the boundary of f. An n-face [u1u2u3 . . . un]
is called an (m1, m2, . . . , mn)-face if d(ui) = mi for i = 1, 2, . . . , n. An n-circuit is a circuit with exactly n edges.

In [7], Lebesgue proved a structural theorem about plane graphs that asserts that every 3-connected plane graph
contains a vertex of given properties (see of [5, Theorem 2]). There are many analogous results appeared since then
[1–3,5,10,14]. In this paper, we consider the structure of toroidal graphs, and prove a Lebesgue type theorem that
strengthens a result given by Borodin in [2].
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Theorem 1. Let G be a connected toroidal graph. Then, one of the following holds:

(1) G contains two adjacent 3-faces.
(2) �(G) < 4.
(3) G contains two adjacent 4-vertices.
(4) G contains a (4, 5, 5)-face.

A list assignment of G is a function L that assigns a list L(v) of colors to each vertex v ∈ V (G). An L-coloring with
impropriety d for integer d �0, or simply an (L, d)∗-coloring, of G is a mapping � that assigns a color �(v) ∈ L(v) to
each vertex v ∈ V (G) such that v has at most d neighbors colored with �(v). For integers m�d �0, a graph is called
(m, d)∗-choosable, if G admits an (L, d)∗-coloring for every list assignment L with |L(v)| = m for all v ∈ V (G). An
(m, 0)∗-choosable graph is simply called m-choosable.

The notion of list improper coloring was introduced independently by Škrekovski [11] and Eaton and Hull [4]. They
proved that every planar graph is (3, 2)∗-choosable and every outerplanar graph is (2, 2)∗-choosable. In [8], it was
proved that every plane graph without 4-circuits and l-circuits for some l ∈ {5, 6, 7} is (3, 1)∗-choosable.

The distances of two triangles T1 and T2 is defined to be the length of a shortest path connecting a vertex of T1 to a
vertex of T2. Lam et al. [6] showed that every plane graph without triangles of distance less than 2 is (4m, m)-choosable.
Xu [13,14] proved that every graph, that can be embedded into a surface of non-negative characteristic and contains no
triangles of distance zero, is (4m, m)-choosable. Wang et al. [12], independently, proved that every plane graph without
triangles of distance zero is 4-choosable. Lam et al. [6], and Wang and Lih [12] independently, proposed a conjecture
that claims that every plane graph without adjacent triangles is 4-choosable. This conjecture is still open.

In this paper we relax this conjecture and prove, as a consequence of Theorem 1, that every toroidal graph G without
adjacent triangles is (4, 1)∗-choosable, and we also give a linear time algorithm for producing an (L, 1)∗-coloring for
an arbitrary given list assignment L with |L(v)|�4 for every v ∈ V (G).

Theorem 2. Let G be a toroidal graph without adjacent triangles. Then G is (4, 1)∗-choosable.

Since K7 is a toroidal graph, and it is not (L, 1)∗-choosable for L(v)={1, 2, 3} for each of its vertices v, Theorem 2
is best possible in this sense.

In Section 2, we give the proofs of our theorems. According to the proof of Theorem 2, a linear time algorithm is
given in Section 3.

2. Proofs of the theorems

Proof of Theorem 1. Assume to the contrary that the theorem is false. Let G be a connected toroidal graph with the
properties that G contains no adjacent 3-faces, �(G)�4, every 4-vertex is adjacent to only 5+-vertices, and every 3-face
is not a (4, 5, 5)-face. The Euler’s formula |V | + |F | − |E|�0 can be rewritten in the following form:

∑
v∈V (G)

{
3 · dG(v)

10
− 1

}
+

∑
v∈F(G)

{
dG(f )

5
− 1

}
�0. (1)

Let � be a weight on V (G) ∪ F(G) by defining �(v) = (3 · d(v)/10) − 1 if v ∈ V (G), and �(f ) = (d(f )/5) − 1
if f ∈ F(G). Then the total sum of the weights is no more than zero. To prove Theorem 1, we will introduce some
rules to transfer weights between the elements of V (G) ∪ F(G) so that the total sum of the weights is kept constant
while the transferring is in progress. However, once the transferring is finished, we can show that the resulting weight
�′ satisfying

∑
x∈V (G)∪F(G) �′(v) > 0. This contradiction to (1) will complete the proof.

Our transferring rules are as follows:

(R1) A 4-vertex transfers 1
20 to each incident 3-face or 4-face.

(R2) A 5+-vertex transfers 7
40 to each incident 3-face.

(R3) A 5-vertex transfers 1
20 to each incident 4-face.

(R4) A 6+-vertex transfers 11
120 to each incident 4-face.
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