
A Certifying Square Root and Division
Elimination

Pierre Neron 1

T.U. Delft
Delft, Netherlands

Abstract

This paper presents the implementation of a program transformation that removes square roots and di-
visions from functional programs without recursion, producing code that can be exactly computed. This
transformation accepts different subsets of languages as input and it provides a certifying mechanism when
the targeted language is Pvs. In this case, we provide a relation between every function definition in the
output code and its corresponding one in the input code, that specifies the behavior of the produced function
with respect to the input one. This transformation has been implemented in OCaml and has been tested
on different algorithms from the NASA ACCoRD project.

Keywords: Program transformation; Real number computation; Certifying transformation; Semantics
preservation

1 Introduction

Critical embedded systems, for example in aeronautics, require a very high level of

safety. One approach to produce code that may satisfy this required level of safety

is to verify its correctness in a proof assistant such as Pvs. The embedded systems

do not run the Pvs code but from the proved Pvs specification we can extract

a corresponding program in a real language that corresponds to this specification,

(see [6] for an example of extraction).

However, these embedded systems may also be cyber-physical systems and there-

fore have an extended use of mathematical operations over real numbers that can

not be computed exactly. In particular, this is a problem if we aim at satisfying

the usual requirements of embedded systems, i.e., bounded memory and bounded

loops. Indeed, some methods have been developed to compute exactly with real

numbers (see [2, 17, 18]) or sufficient precision using lazy evaluation (see [13]) but

these techniques usually involve unbounded behaviors. Therefore, for embedded

1 Email: p.j.m.neron@tudelft.nl

Available online at www.sciencedirect.com

Electronic Notes in Theoretical Computer Science 317 (2015) 117–131

1571-0661/© 2015 The Author. Published by Elsevier B.V.

www.elsevier.com/locate/entcs

http://dx.doi.org/10.1016/j.entcs.2015.10.012

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

mailto:p.j.m.neron@tudelft.nl p.j.m.neron@tudelft.nl
http://www.elsevier.com/locate/entcs
http://dx.doi.org/10.1016/j.entcs.2015.10.012
http://dx.doi.org/10.1016/j.entcs.2015.10.012
http://www.sciencedirect.com
http://creativecommons.org/licenses/by-nc-nd/4.0/


systems, one usually rely on a finite representation and an analysis of rounding er-

rors via abstract interpretation or interval arithmetic [3,5]. Alternatively, one might

want to directly prove the correctness properties not on real numbers but on the

effective implementation the system uses, e.g., floating point numbers [1], but in

this case the proofs become very difficult since any mathematical intuition is lost.

Aeronautics embedded systems, for example, use square root and divisions in

conflict detection and resolution algorithms. These operations can not be exactly

computed in a finite memory since they may produce infinite sequence of digits.

This is not the case for addition and multiplication. These operations only produce

finite sequences of digits and therefore they can be exactly computed using some

fixed point representation. Determining the required size for this fixed point rep-

resentation is relatively easy in embedded systems with only bounded loops. This

paper presents a program transformation tool that eliminates these square roots

and divisions, this transformation allows the extracted code to be exactly com-

puted. The transformation also provides a certifying mechanism [16] to prove the

semantics preservation.

This paper focuses on the system description and the implementation aspects.

The theoretical aspects of this work are presented in [9–11]. The paper is structured

as follows. Section 2 focuses on the main implementation of the transformation in

OCaml. Section 3 describes the embedding of a subset of Pvs to provide the

certifying process. Section 4 introduces some of the technical details and features

of the transformation. Section 5 presents an application of this transformation to a

conflict detection algorithm from the ACCoRD 2 framework.

2 The OCaml Transformation

2.1 Language

The program transformation is defined in OCaml and operates on a language de-

noted MiniPvs that is a typed functional language containing numerical (R) and

Boolean constants, tests (if then else), pairs, the usual arithmetic operators +, −, ×
, /,

√
, the comparisons =, �=, >, ≥, <, ≤, Boolean operators (∧, ∨, ¬), variable

and function definition and application. Figure 1 presents the OCaml definition of

the language as an abstract datatype where uvar is the set of variable identifiers.

The semantics of such a language is quite straightforward. The expression Letin
x body scope is interpreted as let x = body in scope and Letfun f (v,tv) t body scope
is the definition of the function taking v as argument of type tv and returning an

element of type t, i.e., let f (v : tv) : t = body in scope; their semantics use call

by value. The detailed semantics of this language can be found in [11], Chapter

3 and 4. We denote �p�Env the semantics of a the program p in the environment

Env. Function and variable definitions allow for multi-variable definitions (e.g.,let
f (x,y) = x + y) but partial application is not allowed. This language can represent

a subset of many programming language and programs written in such a subset can

2 http://shemesh.larc.nasa.gov/people/cam/ACCoRD/

P. Neron / Electronic Notes in Theoretical Computer Science 317 (2015) 117–131118

http://shemesh.larc.nasa.gov/people/cam/ACCoRD/


Download English Version:

https://daneshyari.com/en/article/421523

Download Persian Version:

https://daneshyari.com/article/421523

Daneshyari.com

https://daneshyari.com/en/article/421523
https://daneshyari.com/article/421523
https://daneshyari.com

