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Abstract

The specification of a concurrent program module is a difficult problem. The specifications must be
strong enough to enable reasoning about the intended clients without reference to the underlying module
implementation. We survey a range of verification techniques for specifying concurrent modules, in particular
highlighting four key concepts: auxiliary state, interference abstraction, resource ownership and atomicity.
We show how these concepts combine to provide powerful approaches to specifying concurrent modules.
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1 Introduction

The specification of a concurrent program module is a difficult problem. When

concurrent threads work with shared data, the resulting behaviour can be complex.

Consequently, the specification of such modules requires effective abstractions for

describing such complex behaviour. The amount of progress that has been made since

the 1970s has been substantial. In this paper, we describe some of the key concepts
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that have emerged over the last few decades. We restrict our exposition to those

concepts which we find most important: auxiliary state, interference abstraction,

resource ownership and atomicity.

We use a counter module to highlight the challenges of specifying a concurrent

module. We require a specification to be expressive enough for verifying the intended

clients of the module, such as a ticket lock. We also require that the specification to be

opaque, in that the implementation details do not leak into the specification. Using

the counter as illustration, we look at a range of historical verification techniques

for concurrency:

• Owicki-Gries introduces auxiliary state to abstract internal state of threads;

• rely/guarantee introduces interference abstraction to abstract the interactions

between different threads;

• concurrent separation logic introduces resource ownership to encode interference

abstraction as auxiliary state;

• linearisability introduces atomicity as a way to abstract the effects of an operation.

We show how recent developments enable us to combine these techniques to

provide expressive ways for specifying concurrent modules such as the counter.

2 A Concurrent Counter

We use a concurrent counter as a running example throughout this paper.

2.1 Implementation

Consider the following implementation of a concurrent counter: 6

function read(x) {
r := [x];

return r;

}

function incr(x) {
do {
r := [x];

b := CAS(x, r, r+ 1);

} while (b = 0);

return r;

}

function wkincr(x) {
r := [x];

[x] := r+ 1;

}

A specification should describe how each operation affects the value of the counter.

Here, the read operation returns the value of the counter, the incr operation

increments the value and returns the old value, and the incr just increments the

value of the counter.

A specification should require the counter to exist as a precondition for each

operation, since operations will not work unless the memory holding the counter

is allocated. In this paper, we use the abstract predicate C(x, n) to denote the

existence of a counter at memory location x with the value n.

6 We assume that the primitive read, write and compare-and-swap (CAS) memory operations are atomic.
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