
Steps in Modular Specifications for
Concurrent Modules
(Invited Tutorial Paper)

Pedro da Rocha Pinto b,1,3 Thomas Dinsdale-Young a,2,4

Philippa Gardner b,1,5

a Department of Computer Science
Aarhus University
Aarhus, Denmark

b Department of Computing
Imperial College London
London, United Kingdom

Abstract

The specification of a concurrent program module is a difficult problem. The specifications must be
strong enough to enable reasoning about the intended clients without reference to the underlying module
implementation. We survey a range of verification techniques for specifying concurrent modules, in particular
highlighting four key concepts: auxiliary state, interference abstraction, resource ownership and atomicity.
We show how these concepts combine to provide powerful approaches to specifying concurrent modules.

Keywords: Concurrency, specification, program verification.

1 Introduction

The specification of a concurrent program module is a difficult problem. When

concurrent threads work with shared data, the resulting behaviour can be complex.

Consequently, the specification of such modules requires effective abstractions for

describing such complex behaviour. The amount of progress that has been made since

the 1970s has been substantial. In this paper, we describe some of the key concepts

1 This research was supported in part by the EPSRC Programme Grants EP/H008373/1 and EP/K008528/1.
2 This research was supported in part by the ModuRes Sapere Aude Advanced Grant from The Danish
Council for Independent Research for the Natural Sciences (FNU).
3 Email: pmd09@doc.ic.ac.uk
4 Email: tyoung@cs.au.dk
5 Email: pg@doc.ic.ac.uk

Available online at www.sciencedirect.com

Electronic Notes in Theoretical Computer Science 319 (2015) 3–18

1571-0661/Crown Copyright © 2015 Published by Elsevier B.V.

www.elsevier.com/locate/entcs

http://dx.doi.org/10.1016/j.entcs.2015.12.002

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

mailto:pmd09@doc.ic.ac.uk
mailto:tyoung@cs.au.dk
mailto:pg@doc.ic.ac.uk
http://www.elsevier.com/locate/entcs
http://dx.doi.org/10.1016/j.entcs.2015.12.002
http://dx.doi.org/10.1016/j.entcs.2015.12.002
http://www.sciencedirect.com
http://creativecommons.org/licenses/by/4.0/


that have emerged over the last few decades. We restrict our exposition to those

concepts which we find most important: auxiliary state, interference abstraction,

resource ownership and atomicity.

We use a counter module to highlight the challenges of specifying a concurrent

module. We require a specification to be expressive enough for verifying the intended

clients of the module, such as a ticket lock. We also require that the specification to be

opaque, in that the implementation details do not leak into the specification. Using

the counter as illustration, we look at a range of historical verification techniques

for concurrency:

• Owicki-Gries introduces auxiliary state to abstract internal state of threads;

• rely/guarantee introduces interference abstraction to abstract the interactions

between different threads;

• concurrent separation logic introduces resource ownership to encode interference

abstraction as auxiliary state;

• linearisability introduces atomicity as a way to abstract the effects of an operation.

We show how recent developments enable us to combine these techniques to

provide expressive ways for specifying concurrent modules such as the counter.

2 A Concurrent Counter

We use a concurrent counter as a running example throughout this paper.

2.1 Implementation

Consider the following implementation of a concurrent counter: 6

function read(x) {
r := [x];

return r;

}

function incr(x) {
do {
r := [x];

b := CAS(x, r, r+ 1);

} while (b = 0);

return r;

}

function wkincr(x) {
r := [x];

[x] := r+ 1;

}

A specification should describe how each operation affects the value of the counter.

Here, the read operation returns the value of the counter, the incr operation

increments the value and returns the old value, and the incr just increments the

value of the counter.

A specification should require the counter to exist as a precondition for each

operation, since operations will not work unless the memory holding the counter

is allocated. In this paper, we use the abstract predicate C(x, n) to denote the

existence of a counter at memory location x with the value n.

6 We assume that the primitive read, write and compare-and-swap (CAS) memory operations are atomic.

P. da Rocha Pinto et al. / Electronic Notes in Theoretical Computer Science 319 (2015) 3–184



Download	English	Version:

https://daneshyari.com/en/article/421619

Download	Persian	Version:

https://daneshyari.com/article/421619

Daneshyari.com

https://daneshyari.com/en/article/421619
https://daneshyari.com/article/421619
https://daneshyari.com/

