
An Introduction to
Algebraic Effects and Handlers

Invited tutorial paper

Matija Pretnar1

Faculty of Mathematics and Physics
University of Ljubljana

Slovenia

Abstract

This paper is a tutorial on algebraic effects and handlers. In it, we explain what algebraic effects are, give
ample examples to explain how handlers work, define an operational semantics and a type & effect system,
show how one can reason about effects, and give pointers for further reading.

Keywords: algebraic effects, handlers, effect system, semantics, logic, tutorial

Algebraic effects are an approach to computational effects based on a premise that

impure behaviour arises from a set of operations such as get & set for mutable store,

read & print for interactive input & output, or raise for exceptions [16,18]. This nat-
urally gives rise to handlers not only of exceptions, but of any other effect, yielding

a novel concept that, amongst others, can capture stream redirection, backtracking,

co-operative multi-threading, and delimited continuations [21,22,5].

I keep hearing from people that they are interested in algebraic effects and

handlers, but do not know where to start. This is what this tutorial hopes to fix.

We will look at how to program with algebraic effects and handlers, how to model

them, and how to reason about them. The tutorial requires no special background

knowledge except for a basic familiarity with the theory of programming languages

(a good introduction can be found in [8,15]).

Available online at www.sciencedirect.com

Electronic Notes in Theoretical Computer Science 319 (2015) 19–35

1571-0661/© 2015 The Author. Published by Elsevier B.V.

www.elsevier.com/locate/entcs

http://dx.doi.org/10.1016/j.entcs.2015.12.003

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://www.elsevier.com/locate/entcs
http://dx.doi.org/10.1016/j.entcs.2015.12.003
http://dx.doi.org/10.1016/j.entcs.2015.12.003
http://www.sciencedirect.com
http://creativecommons.org/licenses/by/4.0/


value v ::= x variable∣∣ true
∣∣ false boolean constants∣∣ fun x �→ c function∣∣ h handler

handler h ::= handler {return x �→ cr, (optional) return clause

op1(x; k) �→ c1, . . . , opn(x; k) �→ cn} operation clauses

computation c ::= return v return∣∣ op(v; y. c) operation call∣∣ do x← c1 in c2 sequencing∣∣ if v then c1 else c2 conditional∣∣ v1 v2 application∣∣ with v handle c handling

Fig. 1. Syntax of terms.

1 Language

Before we dive into examples of handlers, we need to fix a language in which to

work. As the order of evaluation is important when dealing with effects, we split

language terms (Figure 1) into inert values and potentially effectful computations,

following an approach called fine-grain call-by-value [13]. There are a few things

worth mentioning:

Sequencing In do x← c1 in c2, we first evaluate c1, and once this returns a value,

we bind it to x and proceed by c2. If x does not appear in c2, we abbreviate the

sequencing to c1; c2.

Operation calls The call op(v; y. c) passes a parameter value v (e.g. the memory

location to be read) to the operation op, and after op performs the effect, its result

value (e.g. the contents of the memory location) is bound to y and the evaluation

of c, called a continuation, resumes. However, note that encompassing handlers

may override this behaviour.

Generic effects Having an explicit continuation in the call is convenient for the

semantics, but less so for a programmer, who just wants to get back the result

of an operation. So, instead of a full-blown operation call, we define a function,

called a generic effect [18], also labelled as op, which takes a parameter and passes

it to an operation call with the trivial continuation:

op
def
= fun x �→ op(x; y. return y)

Though simpler to use, generic effects are just as expressive because we can recover

the operation call op(v; y. c) by evaluating do y ← op v in c.

Language extensions To focus on new constructs, we shall keep our language

small, but for examples, we are going to extend its values with integers, primitive

1 The material is based upon work supported by the Air Force Office of Scientific Research, Air Force
Materiel Command, USAF under Award No. FA9550-14-1-0096.

M. Pretnar / Electronic Notes in Theoretical Computer Science 319 (2015) 19–3520



Download English Version:

https://daneshyari.com/en/article/421620

Download Persian Version:

https://daneshyari.com/article/421620

Daneshyari.com

https://daneshyari.com/en/article/421620
https://daneshyari.com/article/421620
https://daneshyari.com

