
Reversible Monadic Computing

Chris Heunen1,2

Department of Computer Science
University of Oxford
United Kingdom

Martti Karvonen3

Department of Mathematics and Systems Analysis
Aalto University

Finland

Abstract

We extend categorical semantics of monadic programming to reversible computing, by considering monoidal
closed dagger categories: the dagger gives reversibility, whereas closure gives higher-order expressivity. We
demonstrate that Frobenius monads model the appropriate notion of coherence between the dagger and
closure by reinforcing Cayley’s theorem; by proving that effectful computations (Kleisli morphisms) are
reversible precisely when the monad is Frobenius; by characterizing the largest reversible subcategory of
Eilenberg–Moore algebras; and by identifying the latter algebras as measurements in our leading example
of quantum computing. Strong Frobenius monads are characterized internally by Frobenius monoids.

Keywords: Frobenius monad, dagger category, reversible computing, quantum measurement

1 Introduction

The categorical concept of a monad has been tremendously useful in programming,

as it extends purely functional programs with nonfunctional effects. For example,

using monads one can extend a functional programming language with nondeter-

minism, probabilism, stateful computing, error handling, read-only environments,

and input and output [51]. Haskell incorporates monads in its core language. On

the theoretical side, there are satisfyingly clean categorical semantics. Simply typed

λ-calculus, that may be regarded as an idealized functional programming language,

1 Supported by the Engineering and Physical Sciences Research Council Fellowship EP/L002388/1. We
thank an anonymous referee for Example 6.4, and Jorik Mandemaker, Sean Tull, and Maciej Pirog for
helpful discussions.
2 Email:heunen@cs.ox.ac.uk
3 Email:martti.karvonen@aalto.fi

Available online at www.sciencedirect.com

Electronic Notes in Theoretical Computer Science 319 (2015) 217–237

1571-0661/© 2015 The Authors. Published by Elsevier B.V.

www.elsevier.com/locate/entcs

http://dx.doi.org/10.1016/j.entcs.2015.12.014

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

mailto:heunen@cs.ox.ac.uk
mailto:martti.karvonen@aalto.fi
http://www.elsevier.com/locate/entcs
http://dx.doi.org/10.1016/j.entcs.2015.12.014
http://dx.doi.org/10.1016/j.entcs.2015.12.014
http://www.sciencedirect.com
http://creativecommons.org/licenses/by-nc-nd/4.0/


takes semantics in Cartesian closed categories [31]. The functional programming

concept of a monad is modeled by the categorical concept of a monad [36].

In classical computation it is not always possible to reconstruct the input to an

algorithm from its output. However, by using auxiliary bits, any classical compu-

tation can be turned into a reversible one [48]. Such a computation uses invertible

primitive gates, and composition preserves invertibility. As discarding information

requires work, reversible computations could in principle be implemented at higher

speeds. The only operation costing power is the final discarding of auxiliary bits.

This is brought to a head in quantum computing, where any deterministic evo-

lution of quantum bits is invertible, unlike the eventual measurement that converts

quantum information to classical information. Another novelty in quantum comput-

ing is that it is impossible to copy or delete quantum information. This leads to a

linear type theory of resources rather than a classical one [47]: quantum computing

takes semantics in monoidal categories, rather than Cartesian ones [2].

Led by quantum computing, this article extends the categorical semantics of

monadic programming to reversible computing. To allow for a linear type theory

we consider monoidal closed categories. To allow for reversible computations, we

consider dagger categories; in general these correspond to bidirectional computa-

tions rather than invertible ones, which in the quantum case comes down to the

same thing. To allow for monadic effects, we introduce Frobenius monads. In the

presence of a dagger, any monad gives rise to a comonad; a Frobenius monad is one

that interacts with its comonad counterpart via the following Frobenius law :

= (1)

Here we used the graphical calculus for monoidal categories [44,34], that will be

explained further in Section 2, along with several examples. 4

Our main contribution is to take reversal as a primitive and so justify the claim

that Frobenius monads are precisely the right notion as follows:

• Section 3 justifies the Frobenius law as a necessary (and sufficient) consequence

of coherence between the dagger and closure. In a reversible setting, it is natural

to consider involutive monoids. In a monoidal closed category, any monoid em-

beds into a canonical one by Cayley’s theorem. We prove that this embedding

preserves the involution induced by the dagger if and only if the monoid satis-

fies the Frobenius law. This derivation from first principles is a noncommutative

generalization of [41, Theorem 4.3] with a new proof.

• Section 4 characterizes Frobenius monads internally. Monads are an external no-

tion. A good example is the writer monad, that allows programs to keep auxiliary

4 We often need to reason simultaneously about morphisms in a monoidal category and endofunctors on it.
Unfortunately there is no sound and complete graphical proof calculus that would handle this yet. Therefore
we cannot use the graphical calculus exclusively and also have to use traditional commutative diagrams.

C. Heunen, M. Karvonen / Electronic Notes in Theoretical Computer Science 319 (2015) 217–237218



Download English Version:

https://daneshyari.com/en/article/421631

Download Persian Version:

https://daneshyari.com/article/421631

Daneshyari.com

https://daneshyari.com/en/article/421631
https://daneshyari.com/article/421631
https://daneshyari.com

