
The Expressiveness of CSP With Priority

A.W. Roscoe1

Oxford University Department of Computer Science

Abstract

The author previously [16,15] defined CSP-like operational semantics whose main restrictions were the
automatic promotion of most τ actions, no cloning of running processes, and no negative premises in
operational semantic rules. He showed that every operator with such an operational semantics can be
translated into CSP and therefore has a semantics in every model of CSP. In this paper we demonstrate
that a similar result holds for CSP extended by the priority operator described in Chapter 20 of [15], with
the restriction on negative premises removed.

Keywords: CSP, operational semantics, priority

1 Introduction

As well as its denotational semantics in models such as traces T and failures-

divergences N , CSP [11] has a well-established operational semantics first described

in SOS in [5,6], and congruence with that is perhaps the main criterion for the ac-

ceptability of any new semantic model.

The author previously created a class of CSP-like operational semantic defini-

tions that automatically have semantics over every CSP model. In addition to a

number of other restrictions on the full generality of Structured Operational Se-

mantic (SOS) definitions, CSP-like ones are not permitted any negative premises:

thus there can be no rule in which some action can fire only if one of its arguments

can not perform some (either one or more) action(s).

There have been a number of proposals for adding priority to CSP. A straight-

forward one, because it does not involve building special semantic models or types

of LTSs, was proposed in [15]. Pri≤(P), for a partial order on the events that pro-

cesses perform, permits P an event x only when no higher priority event is possible.

With restrictions on how the invisible event τ fits into ≤, this adds very usefully to

CSP, for example by permitting the accurate description of real-time systems.

1 Email: bill.roscoe@cs.ox.ac.uk

Available online at www.sciencedirect.com

Electronic Notes in Theoretical Computer Science 319 (2015) 387–401

1571-0661/© 2015 The Author. Published by Elsevier B.V.

www.elsevier.com/locate/entcs

http://dx.doi.org/10.1016/j.entcs.2015.12.023

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

mailto:bill.roscoe@cs.ox.ac.uk
http://www.elsevier.com/locate/entcs
http://dx.doi.org/10.1016/j.entcs.2015.12.023
http://dx.doi.org/10.1016/j.entcs.2015.12.023
http://www.sciencedirect.com
http://creativecommons.org/licenses/by-nc-nd/4.0/


Pri≤(·) is not CSP-like since it requires negative premises. Indeed it does not

have a semantics in most CSP models. This raises the question of whether we can

capture a notion of Pri-CSP-like operational semantics which includes this operator,

where all Pri-CSP-like operators can be expressed in terms of CSP plus Pri≤(·).
Establishing such a notion is the job of the present paper.

In the next section, we remind ourselves about CSP and its operational seman-

tics. We then recall CSP-like operational semantics and outline their expressiveness

result. Finally we recall the definitions of Pri≤(·) in terms of operational semantics

and over FL, the finite linear or ready tracesmodel that can record an acceptance set

before each event. In Section 3 we generalise the definition of CSP-like to achieve

the goal set out above. The main result of this paper then follows, in which we

show that any operator (or class of operators) with such Pri-CSP-like operational

semantics can be simulated precisely in augmented CSP. The precision obtained by

this simulation depends on whether or not the language involves the CSP concept

of termination, represented �. However, for brevity this paper does not include the

role of � in CSP semantics: it is fully covered in the extended version [18].

As with [16], the primary motivation of this paper is to characterise what opera-

tors and languages can be translated into CSP (in this paper extended by Pri≤(·))
to identify which of these can be handled on the model checker FDR [9], which itself

now supports this operator 2 . We give some examples of what is now representable

in Section 5.

2 Background

2.1 The operational semantics of CSP

The SOS operational semantics [5,6] of CSP came along after its well-known deno-

tational semantics. For CSP (without � and sequential composition), the action

labels come from Σ ∪ {τ}, where Σ is the alphabet, the actions that are visible to

and controllable by the external observer, and τ is an invisible and uncontrollable

event such that whenever it is enabled and another event does not happen quickly,

it will. Given the process P , αP means its own set of Σ actions, which is usually

just the visible events it uses.

In SOS style [13] we need rules to infer every action that each process can

perform. The conditions that enable actions can be of three sorts:

• Positive: Some other process can perform a specific action. This other process is

determined from the syntax of the process P whose transitions we are calculating.

In our setting these other processes are, except in the case of recursion, arguments

of the operator whose semantics we are defining.

• Negative: The same except the other process cannot perform a given action.

• Side conditions on the actions etc that appear.

2 FDR3 supports two priority operators: prioritisepo is directly equivalent to the one used in this paper,
while prioritise is a restricted case that does not require the programmer to construct an explicit partial
order.

A.W. Roscoe / Electronic Notes in Theoretical Computer Science 319 (2015) 387–401388



Download English Version:

https://daneshyari.com/en/article/421640

Download Persian Version:

https://daneshyari.com/article/421640

Daneshyari.com

https://daneshyari.com/en/article/421640
https://daneshyari.com/article/421640
https://daneshyari.com

