Available online at www.sciencedirect.com

H H Electronic Notes in
SClenceDlreCt Theoretical Computer

Science

W TN
ELSEVIER Electronic Notes in Theoretical Computer Science 319 (2015) 387-401
www.elsevier.com/locate/entcs

The Expressiveness of CSP With Priority

A.W. Roscoe!

Ozford University Department of Computer Science

Abstract

The author previously t[16,15] defined CSP-like operational semantics whose main restrictions were the
automatic promotion of most 7 actions, no cloning of running processes, and no negative premises in
operational semantic rules. He showed that every operator with such an operational semantics can be
translated into CSP and therefore has a semantics in every model of CSP. In this paper we demonstrate
that a similar result holds for CSP extended by the priority operator described in Chapter 20 of [15], with
the restriction on negative premises removed.

Keywords: CSP, operational semantics, priority

1 Introduction

As well as its denotational semantics in models such as traces 7 and failures-
divergences N, CSP [11] has a well-established operational semantics first described
in SOS in [5,6], and congruence with that is perhaps the main criterion for the ac-
ceptability of any new semantic model.

The author previously created a class of CSP-like operational semantic defini-
tions that automatically have semantics over every CSP model. In addition to a
number of other restrictions on the full generality of Structured Operational Se-
mantic (SOS) definitions, CSP-like ones are not permitted any negative premises:
thus there can be no rule in which some action can fire only if one of its arguments
can not perform some (either one or more) action(s).

There have been a number of proposals for adding priority to CSP. A straight-
forward one, because it does not involve building special semantic models or types
of LTSs, was proposed in [15]. Pri<(P), for a partial order on the events that pro-
cesses perform, permits P an event z only when no higher priority event is possible.
With restrictions on how the invisible event 7 fits into <, this adds very usefully to
CSP, for example by permitting the accurate description of real-time systems.

1 Email: bill.roscoe@cs.ox.ac.uk

http://dx.doi.org/10.1016/j.entcs.2015.12.023
1571-0661/© 2015 The Author. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).


mailto:bill.roscoe@cs.ox.ac.uk
http://www.elsevier.com/locate/entcs
http://dx.doi.org/10.1016/j.entcs.2015.12.023
http://dx.doi.org/10.1016/j.entcs.2015.12.023
http://www.sciencedirect.com
http://creativecommons.org/licenses/by-nc-nd/4.0/

388 A.W. Roscoe / Electronic Notes in Theoretical Computer Science 319 (2015) 387-401

Pri<(-) is not CSP-like since it requires negative premises. Indeed it does not
have a semantics in most CSP models. This raises the question of whether we can
capture a notion of Pri-CSP-like operational semantics which includes this operator,
where all Pri-CSP-like operators can be expressed in terms of CSP plus Pri<(-).
Establishing such a notion is the job of the present paper.

In the next section, we remind ourselves about CSP and its operational seman-
tics. We then recall CSP-like operational semantics and outline their expressiveness
result. Finally we recall the definitions of Pri<(-) in terms of operational semantics
and over FL, the finite linear or ready traces model that can record an acceptance set
before each event. In Section 3 we generalise the definition of CSP-like to achieve
the goal set out above. The main result of this paper then follows, in which we
show that any operator (or class of operators) with such Pri-CSP-like operational
semantics can be simulated precisely in augmented CSP. The precision obtained by
this simulation depends on whether or not the language involves the CSP concept
of termination, represented v'. However, for brevity this paper does not include the
role of v' in CSP semantics: it is fully covered in the extended version [18].

As with [16], the primary motivation of this paper is to characterise what opera-
tors and languages can be translated into CSP (in this paper extended by Pri<(-))
to identify which of these can be handled on the model checker FDR [9], which itself
now supports this operator . We give some examples of what is now representable
in Section 5.

2 Background

2.1 The operational semantics of CSP

The SOS operational semantics [5,6] of CSP came along after its well-known deno-
tational semantics. For CSP (without v and sequential composition), the action
labels come from 3 U {7}, where ¥ is the alphabet, the actions that are visible to
and controllable by the external observer, and 7 is an invisible and uncontrollable
event such that whenever it is enabled and another event does not happen quickly,
it will. Given the process P, aP means its own set of ¥ actions, which is usually
just the visible events it uses.

In SOS style [13] we need rules to infer every action that each process can
perform. The conditions that enable actions can be of three sorts:

e Positive: Some other process can perform a specific action. This other process is
determined from the syntax of the process P whose transitions we are calculating.
In our setting these other processes are, except in the case of recursion, arguments
of the operator whose semantics we are defining.

e Negative: The same except the other process cannot perform a given action.
e Side conditions on the actions etc that appear.
2 FDR3 supports two priority operators: prioritisepo is directly equivalent to the one used in this paper,

while prioritise is a restricted case that does not require the programmer to construct an explicit partial
order.



Download English Version:

https://daneshyari.com/en/article/421640

Download Persian Version:

https://daneshyari.com/article/421640

Daneshyari.com


https://daneshyari.com/en/article/421640
https://daneshyari.com/article/421640
https://daneshyari.com

