
Stateful Runners of Effectful Computations

Tarmo Uustalu1

Institute of Cybernetics, Tallinn University of Technology,
Akadeemia tee 21, 12618 Tallinn, Estonia

Abstract

What structure is required of a set so that computations in a given notion of computation can be run
statefully with this set as the state set? For running nondeterministic computations statefully, a resolver
structure is needed; for interactive I/O computations, a “responder-listener” structure is necessary; to be
able to serve stateful computations, the set must carry the structure of a lens. We show that, in general,
to be a stateful runner of computations for a monad corresponding to a Lawvere theory (defined as a set
equipped with a monad morphism between the given monad and the state monad for this set) is the same
as to be a comodel of the theory, i.e., a coalgebra of the corresponding comonad. We work out a number of
instances of this observation and also compare runners to handlers.

Keywords: effects, monads, Lawvere theories, comodels, state monads, handlers

1 Introduction

This paper is about Moggi’s monad-based and Plotkin and Power’s Lawvere theories

based approaches to effectful computation [8,10].

Given a monad (T, η, μ), a computation of a value in X is an element of T X.

Computations are there to compute values, so we consider it natural to wish to

extract these values, to run computations. Ideally, we might want to have at our

disposal a polymorphic function θ : ∀X.T X → X for extracting values from com-

putations, but this is generally too much to ask (although it is possible, e.g., for

writer monads).

However we can often produce a value, if we are allowed to rely on some input—

think of it as an initial state—drawn from some set C with suitable structure.

For example, if we have a finitely nondeterministic computation in the sense of a

binary wellfounded leaf tree, a bitstream can be used to identify a leaf. As running

should reasonably be compositional in the sense that running the sequence of two

computations should be the same as composing two runs, a run should not only

1 tarmo@cs.ioc.ee

Available online at www.sciencedirect.com

Electronic Notes in Theoretical Computer Science 319 (2015) 403–421

1571-0661/© 2015 The Author. Published by Elsevier B.V.

www.elsevier.com/locate/entcs

http://dx.doi.org/10.1016/j.entcs.2015.12.024

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://www.elsevier.com/locate/entcs
http://dx.doi.org/10.1016/j.entcs.2015.12.024
http://dx.doi.org/10.1016/j.entcs.2015.12.024
http://www.sciencedirect.com
http://creativecommons.org/licenses/by-nc-nd/4.0/


depend on an initial state, but also return a final state (that can serve as the initial

state for another run). In the case of nondeterminism and bitstreams, the final state

could be the remainder of the bitstream provided as the initial state. So in general

we might want to look for a polymorphic function θ : ∀X.T X → TC X where

(TC , ηC , μC) is the state monad for C as the state set. The compositionality we

want amounts to θ being not just a natural transformation, but a monad morphism.

In this paper, we answer the question of when a set C can be used to run

computations in a monad (T, η, μ) statefully, assuming that the monad corresponds

to a Lawvere theory. The answer is: C has to carry a comodel of the Lawvere theory

(i.e., a coalgebra of the corresponding comonad). We spell out a number of instances

of this generality, for nondeterminism, interactive I/O and stateful computations.

This is an easy exercise, but the results are quite instructive, we find. For some

versions of nondeterminism, for instance, runners can only recover a part of the

information in a given computation; other versions of nondeterminism admit only

trivial runners that reveal nothing about the computation. So some variations of

nondeterminism are inherently more operational than others.

Runners are somewhat similar to handlers, but one bigger difference is that

runners are polymorphic in the value set. For example, handling allows one to

extract a value from a nondeterministic computation (a binary wellfounded leaf tree)

over a specific value set that carries a binary operation by folding this operation

over the leaf labels. (If for us a nondeterministic computation is a nonempty list

of values, this operation must be associative.) Running does not allow such things.

In our view, the pragmatics of handlers and runners are different: handlers are a

programming language construct, but runners are compilation schemes.

The paper is organized as follows. In Section 2, we review the few basic facts

about Lawvere theories, models and comodels that we need. In Section 3, we

show that stateful runners for a monad corresponding to a Lawvere theory are in a

bijection with comodels of the theory (coalgebras of the corresponding comonad).

We also compare this observation to a fact about monad morphisms to continuation

monads—a different type of runners. In Section 4, we work out the instances for

nondeterminism, interactive I/O and stateful computation. Just before concluding,

in Section 5, we compare runners to handlers.

2 Lawvere theories, models, comodels

We begin by reviewing the most basic definitions and facts about finitary Lawvere

theories and models (for a proper exposition, see, e.g., [6]) as well as Power’s comod-

els [13,11]. Countable Lawvere theories and κ-ary Lawvere theories for a regular

cardinal κ are defined analogously.

Lawvere theories

A (finitary) Lawvere theory is given by a small category L with finite products and

a functor L : Fop → L that is identity on objects and strictly preserves the finite

products of Fop.

T. Uustalu / Electronic Notes in Theoretical Computer Science 319 (2015) 403–421404



Download English Version:

https://daneshyari.com/en/article/421641

Download Persian Version:

https://daneshyari.com/article/421641

Daneshyari.com

https://daneshyari.com/en/article/421641
https://daneshyari.com/article/421641
https://daneshyari.com

