Available online at www.sciencedirect.com

Electronic Notes in

SCi e n Ce Di reCt Theoretical Computer

Science

ELSEVIER Electronic Notes in Theoretical Computer Science 253 (2009) 57-75
www.elsevier.com/locate/entcs

Using Heuristics to Automate Parameter

Generation for Benchmarking of Java
Methods

Michael Kuperberg! Fouad Omri?

Chair for Software Design and Quality
Institute for Program Structures and Data Organisation
Faculty of Informatics, Universitat Karlsruhe (TH)

Abstract

Automated generation of method parameters is needed in benchmarking scenarios where manual or random
generation of parameters are not suitable, do not scale or are too costly. However, for a method to execute
correctly, the generated input parameters must not violate implicit semantical constraints, such as ranges
of numeric parameters or the maximum length of a collection. For most methods, such constraints have no
formal documentation, and human-readable documentation of them is usually incomplete and ambiguous.
Random search of appropriate parameter values is possible but extremely ineffective and does not pay
respect to such implicit constraints. Also, the role of polymorphism and of the method invocation targets
is often not taken into account. Most existing approaches that claim automation focus on a single method
and ignore the structure of the surrounding APIs where those exist. In this paper, we present HEURIGENJ,
a novel heuristics-based approach for automatically finding legal and appropriate method input parameters
and invocation targets, by approximating the implicit constraints imposed on them. Our approach is
designed to support systematic benchmarking of API methods written in the Java language. We evaluate
the presented approach by applying it to two frequently-used packages of the Java platform API, and
demonstrating its coverage and effectiveness.

Keywords: Heuristics, parameter generation, exception handling, automated benchmarking, constraint
approximation

1 Introduction

Most software applications developed today build on object-oriented languages and
execution platforms. For example, the Java Virtual Machine executes Java byte-
code, to which the Java programming language and other programming languages
are compiled. For Java, the building blocks of such applications are classes, which
contain methods and fields. The functional properties (e.g. correctness) and extra-
functional properties (e.g. performance) of methods are subject of ongoing research,

! Email: mkuper@ipd.uka.de
2 Email: omri@ipd.uka.de

1571-0661 © 2009 Elsevier B.V. Open access under CC BY-NC-ND license.
doi:10.1016/j.entcs.2009.09.028


mailto:mkuper@ipd.uka.de
mailto:omri@ipd.uka.de
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/

58 M. Kuperberg, F. Omri/ Electronic Notes in Theoretical Computer Science 253 (2009) 57-75

and analysis of these properties must consider the impact of method input param-
eters. Also, the state of the objects and class instances whose methods are invoked
must be considered.

For example, in benchmarking, the input parameters often have a strong impact
on the method performance, so different parameters must be studied. This task
quickly becomes too expensive for manual implementation if the number of methods
is very high, as it is often the case in the application programming interfaces (APIs):
the Java platform API contains several thousands of methods. However, there exists
no automated API benchmarking tool or strategy for Java APIs. In this paper,
Java API denotes any API compiled to and accessible from Java bytecode; we
explicitly refer to the Java platform API when the functionality provided by the
Java Runtime Environment is meant.

Where manual generation of method parameters is not suitable, randomised ap-
proaches are often tried, but they become ineffective where the potential parameter
space is too large. Also, existing randomised approaches mostly focus on testing-
oriented cases, i.e. on finding cases where software’s behaviour deviates from the
expected, specified targets. In contrast to maximising failure occurrence, bench-
marking needs to find parameters that do not deviate from expected execution
w.r.t. exceptions and errors. Also, software testing does not need to recover or to
learn from failed parameters, while in benchmarking, failures must be minimised as
much as possible to achieve good coverage.

If a method requires input parameters, they must be provided in accordance
with their static types in the method’s signature, e.g. for interface-typed pa-
rameters, an instance of a class implementing that interface must be passed.
In addition, implicit semantical requirements for these parameters exist: for ex-
ample, the method java.lang.String. substring(int beginIndex) throws
an IndexOutOfBoundsException for an instance str if beginIndex < 0 or if
beginIndex > str.length().

In the cases where such requirements are given, if at all, they are described
informally by humans and for humans, and thus cannot be evaluated by tools due
to the complexity and general ambiguity of human language. Also, there are no
formal specifications that can be used by an automated approach. Guessing an
appropriate value using a random search is intractable given the large range of
possible values that could be generated for each single parameter; for the above
example, the parameter beginIndex has a range of 232 different values. The few
existing approaches that claim automation of parameter generation focus on a single
method and ignore the structure of the surrounding APIs where those exist.

The contribution of this paper is a novel self-correcting approach for the auto-
matic generation of input parameters for Java methods, based on formally-defined
heuristics. The heuristics help to find parameters which can be used in meaningful
benchmarks. The presented approach detects inappropriate methods arguments on
the basis of thrown exceptions, automatically approximates underlying exception
causes using novel heuristics and recovers them by generating new and appropriate
input parameters. The generation of the parameter values for a method is not based



Download English Version:

https://daneshyari.com/en/article/421700

Download Persian Version:

https://daneshyari.com/article/421700

Daneshyari.com


https://daneshyari.com/en/article/421700
https://daneshyari.com/article/421700
https://daneshyari.com

