Investigation of Regional Influence of Magic-Angle Effect on T_{2} in Human Articular Cartilage with Osteoarthritis at 3 T

Ligong Wang, PhD, Ravinder R. Regatte, PhD

Abstract

Rationale and Objectives: The objectives of this research study were to determine the magic-angle effect on different subregions of in vivo human femoral cartilage through the quantitative assessment of the effect of static magnetic field orientation (B_{0}) on transverse (T_{2}) relaxation time at 3.0 T . Materials and Methods: Healthy volunteers ($n=5$; mean age, 36.4 years) and clinical patients ($n=5$; mean age, 64 years) with early osteoarthritis (OA) were scanned at 3.0-T magnetic resonance using an 8 -channel phased-array knee coil (transmit-receive).

Results: The T_{2} maps revealed significantly greater values in anterior than in posterior regions. When the cartilage regions were oriented at 55° to B_{0} (magic angle), the longest T_{2} values were detected in comparison with the neighboring regions oriented 90° and $180^{\circ}\left(0^{\circ}\right)$ to B_{0}. The subregions oriented $180^{\circ}\left(0^{\circ}\right)$ to B_{0} showed the lowest T_{2} values. Conclusions: The differences in T_{2} values of different subregions suggest that magic-angle effect needs to be considered when interpreting cartilage abnormalities in OA patients.

Key Words: Osteoarthritis; T_{2} mapping; cartilage imaging; magic-angle effect; transverse relaxation time.
©AUR, 2015

The primary macromolecules in human cartilage are collagen type II and proteoglycans. Proteoglycan is responsible for much of the compressive stiffness through electrostatic repulsion, whereas collagen provides the tensile and shear strength (1). The earliest biochemical changes in osteoarthritis (OA) are the modifications at the molecular level of cartilage matrix, which occur without obvious morphologic changes. The loss of glycosaminoglycan and the collagen breakdown are the typical characteristics of early OA (2-4).

Human articular cartilage is a highly ordered and depthdependent ultrastructure and is essentially defined by the organization of the collagen fibrils (5). Collagen fibers in his-

[^0]tology have three predominant organizational zones across the depth of the cartilage tissue. In the superficial (tangential) zone, the collagen fabrils are parallel to the cartilage surface, whereas in the radial (deep) zone, the fabrils are oriented perpendicular to the surface. However, in the transitional (middle/intermediate) zone, the arrangement of collagen fibers is almost random. The characteristic arrangement of collagen fibers results in the "magic-angle effect" and exhibits anisotropic properties when measured at different tissue depths and from different physical orientations in the proton magnetic resonance (MR) images (5-7).
T_{2} mapping is a promising approach for assessing the underlying collagen microstructure in the extracellular matrix of articular cartilage. Damages to the extracellular matrix of articular cartilage and the increase of water content in degenerated cartilage give rise to increases in the T_{2} relaxation times (8-10).

Previous studies (5-7,11-14) have revealed that the T_{2} values will be elevated when the articular cartilage surface is placed at approximately 55° with respect to the external static magnetic field B_{0}. The signal changes that occur at angles approximating 54.7° are known as the magic-angle phenomenon because the dipolar interaction between two nuclei scales is $3 \cos ^{2} \theta-1$, where θ is the angle between the internuclear vectors joining the nuclei and B_{0}. The dipolar interaction that tends to reduce signal
intensity will vanish when $\left(3 \cos ^{2} \theta-1\right)=0$, which is satisfied when θ equals 54.7°.

One manifestation of this magic-angle phenomenon is that the T_{2} decay of cartilage tissue is greatly retarded, and the signal intensity is maximal when the collagen fiber is oriented at this angle in relation to $B_{0}(5,11)$. Other investigators (7,10,13,15-19) reported that T_{2} relaxation reflects the ability of free water proton molecules to move and to exchange energy inside the cartilaginous matrix. The T_{2} variation may be due to the regional differences in cartilage compression. The weight-bearing portion of the femoraltibial joint is subject to compressive force that may lower the water content of the cartilage.

The aim of this work was to perform a quantitative assessment of the effect of B_{0} orientation on T_{2} relaxation times to determine the magic-angle effect on different subregions of in vivo human femoral cartilage at 3.0 T . We measured and compared the global and regional changes of femoral cartilages in T_{2} relaxation times for healthy controls and OA patients using quantitative T_{2} relaxation method at 3.0 T .

MATERIALS AND METHODS

Human Subjects

Five healthy volunteers ($n=4$ men and $n=1$ woman, ranging in age from 24 to 45 years, with an average age of 35.6 years) and five patients ($n=3$ men and $n=2$ women, ranging in age from 53 to 82 years, with an average age of 65 years) with clinically documented early knee OA by radiography (KellgrenLawrence [K-L] grading scale 1 and 2) (20) were recruited. All healthy volunteers and OA patients were scanned for T_{2} mapping. To limit the patient motion between acquisitions, the knee was fixed with foam padding, which is very important because the subject's positioning is extremely critical for subsequent orientation studies of regional cartilage T_{2} values. All the human subjects provided informed consent to participate in the research, which was approved by our institutional review board.

Imaging Hardware

All MRI experiments were performed on a 3.0-T clinical MR scanner (MAGNETOM Tim Trio; Siemens Medical Solutions, Erlangen, Germany). An 18-cm diameter, 8-channel, transmit-receive, phased-array (PA) knee coil was used for all the imaging measurements.

Imaging Protocol

The protocol included the following sequence: 2D sagittal T_{2}-weighted spin-echo (SE) imaging with the following imaging parameters: time of repetition (TR)/time of echo $(T E)=4000 / 16.5,33,49.5,66,82.5$ milliseconds; field of view $=15 \mathrm{~cm}$; matrix $=256 \times 256$; bandwidth $=130 \mathrm{~Hz}$; slice thickness $=1.5 \mathrm{~mm}$.

MR Images Analysis and Processing

All the MR images were analyzed based on global and regional compartments. Three subregions $\left(55^{\circ}, 90^{\circ}\right.$, and 180° [0°] with respect to B_{0}) were defined in the femoral cartilages of each subject. The in-house developed routines in MATLAB (version 7.1; The MathWorks, Natick, MA) and C++ were used for offline processing of the acquired MR images.
T_{2}-weighted images with the shortest $\mathrm{TE}(16.5$ milliseconds) were used for the segmentation of femoral cartilages. Regions of interest (ROIs) were segmented manually for each slice for all the subjects. These segmentations were used to draw ROIs for each MR image with different TE values. T_{2} maps were computed with custom-built MATLAB routines using the corresponding expression $(10,12,13,15)$.

The intersubject variability of the T_{2} maps was quantified using root mean square coefficients of variation percentage (RMS-CV\%), and the Student t test was used to determine whether there were any statistically significant differences in the T_{2} values among the local/global regions of femoral cartilages for asymptomatic and OA subjects.

RESULTS

Figure 1a displays the three subregions oriented $55^{\circ}, 90^{\circ}$, and $180^{\circ}\left(0^{\circ}\right)$ related to the external static magnetic field B^{0} in the anterior and posterior regions with the corresponding magnified details showing the highly organized collagen structure of the human cartilage, respectively. Figure 1b is the plot showing the $\left(3 \cos ^{2} \theta-1\right)$ factor as a function of angle with respect to B_{0} for nuclear dipolar interaction. In the two positions with two arrows identifying the discrete sampling points where $\left(3 \cos ^{2} \theta-1\right)=0$, the θ equals approximately 55° and 125°, respectively, and the magic-angle effect may emerge in these two sampling positions. Other arrows show the sampling points where the $\left(3 \cos ^{2} \theta-1\right)$ factor has the maximal and minimal values, respectively.

Two representative T_{2} (top row) slices obtained from an OA patient overlaid onto the shortest TE (16.5 milliseconds) were displayed in Figure 2a and b, respectively. Figure 2c and d correspondingly showed a series of subregions on the femoral cartilage segmented at every 20° with respect to B_{0}. Figure 2e is the T_{2} profiles of the corresponding subregions segmented in Figure 2c or d. As shown in Figure 2e, the T_{2} values of OA generally were greater than those of healthy controls. In the sections oriented 55° relative to B_{0} (magic angle, $120^{\circ}-140^{\circ}$ and $240^{\circ}-260^{\circ}$ as shown in Fig 2 c or d), the longest T_{2} values were detected in comparison with the neighboring sections oriented $90^{\circ}\left(100^{\circ}\right.$ and 280° as shown in Fig 2c or d) and 180° with respect to B_{0}. The subregions oriented 180° relative to B_{0} showed the lowest T_{2} values. Furthermore, the T_{2} values displayed obviously greater values in the anterior than in the posterior regions.

Figure 3 displayed the bar charts of the average anterior and posterior T_{2} values in the subregions oriented $55^{\circ}, 90^{\circ}$, and

https://daneshyari.com/en/article/4218123

Download Persian Version:

https://daneshyari.com/article/4218123

Daneshyari.com

[^0]: Acad Radiol 2015; 22:87-92
 From the Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University; School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University. Office of Ligong Wang, 2nd Floor, Bldg. 402, 199 Ren Ai Rd, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China (L.W.) and Quantitative Multinuclear Musculoskeletal Imaging Group (QMMIG), Center for Biomedical Imaging, Department of Radiology, New York University Langone Medical Center, New York, NY 10016, USA (R.R.R.). Received February 16, 2014; accepted July 25, 2014. Address correspondence to: L.W. e-mail: ligong.wang@ hotmail.com
 ©AUR, 2015
 http://dx.doi.org/10.1016/j.acra.2014.07.015

