Validation of Monte Carlo Estimates
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Operating Points for Normal Data
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Rationale and Objectives: Traditional two-class receiver operating characteristic (ROC) analysis is inadequate for the complete evalua-
tion of observer performance in tasks with more than two classes.

Materials and Methods: Here, a Monte Carlo estimation method for operating point coordinates on a three-class ROC surface is devel-
oped and compared with analytically calculated coordinates in two special cases: (1) univariate and (2) restricted bivariate trinormal under-
lying data.

Results: In both cases, the statistical estimates were found to be good in the sense that the analytical values lay within the 95% confidence
interval of the estimated values about 95% of the time.

Conclusions: The statistical estimation method should be key in the development of a pragmatic performance metric for evaluation of

observers in classification tasks with three or more classes.
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eceiver operating characteristic (ROC) analysis has,

for many vyears, been the standard for evaluating

observer performance in a medical decision task
with two classes to which observations belong (1). A particu-
larly familiar example is the canonical radiologic task of iden-
tifying whether an abnormality, such as a fracture or lesion, is
present in an image.

Not all medical, or even radiological, tasks are so readily
restricted to two outcomes, however. A particular task might
require distinguishing among multiple types of abnormality
(2) or distinguishing normal tissue from abnormalities of dif-
ferent types (3), or, in the computer-aided diagnosis (CAD)
task that originally motivated much of the work in this area,
one might need to distinguish malignant and benign actual
lesions from the false-positive detections produced by an auto-
mated scheme (4-6). Traditional two-class ROC analysis is
inadequate for the complete evaluation of observer perform-
ance in such tasks. Unfortunately, although the broader theo-
retical characteristics of observer behavior in a three-class
classification task were outlined many decades ago (7), the
extension of this knowledge to a complete understanding
and the implementation of such knowledge into practical
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tools for addressing real clinical problems have remained
elusive.

Why should this be the case? After all, two-class ROC anal-
ysis is successful not just because of its practical usefulness but
also because of the theoretical simplicity and elegance it pos-
sesses. One measures some quality of the objects being classi-
fied and compares this decision variable with a critical
threshold. If the decision variable is above the critical thresh-
old, the object is classified as positive; the fraction of actually
positive objects called positive is the true-positive fraction
(TPF), while the fraction of actually negative objects (incor-
rectly) called positive is the false-positive fraction (FPF).
The FPF and TPF values give the observer’s ROC operating
point at that critical threshold; if a different critical threshold is
chosen, a different operating point is obtained, and the collec-
tion of all (FPE, TPF) pairs for all values of the critical thresh-
old is the ROC curve (1,7,8). The observer that achieves the
best possible ROC performance, given the variability of the
decision variables across the actually positive and negative
populations, is called the ideal observer (7,8). Objectively
comparing two different observers based on their ROC
curves is simple if one curve is always above the other, but it
is problematic if the two curves cross; however, the area
under the ROC curve (AUC) is a readily calculated
quantity that allows such comparison and, furthermore, is
theoretically justifiable since the AUC can be shown to be
the chance of the observer making a correct decision in a
two-alternative forced-choice task (i.e., when presented
with a pair of observations, one actually positive and one
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actually negative, the chance of correctly deciding which is
which) (8). Given a simple model for the underlying data,
the binormal model, ROC curves can be computed under
both assumptions in which the observer’s decision variable is
directly related to the underlying data [the conventional
binormal model (9)] and in which the decision variable is an
ideal observer decision function of the underlying data (the
proper binormal model (10)).

Turning to the three-class task, difficulties appear at the
outset and accumulate at a discouraging rate. The perform-
ance of an observer is characterized by six of the nine possible
conditional classification probabilities given a particular deci-
sion rule (the probabilities of deciding an observation belongs
to one class when it is actually drawn from that or another
class, analogous to TPF and FPF), not three as one might
naively expect (11-15). [The nine classification probabilities
are related by three equations, one for each class, because
they are conditional probabilities (16), just as
TPF 4 FNF = 1 where FNF is the false-negative fraction;
thus, three of the classification probabilities may be elimina-
ted, leaving six.] A number of researchers have proposed
applying restrictions to the form of the observer, to reduce
the dimensionality of the performance description from six
to three in a more principled fashion (17-21). However,
despite the resulting observer behavior being consistent with
that of the ideal observer given the restrictions imposed
(22,23), these their
performance are nevertheless not fully general. In the
general case, six conditional classification probabilities (the

descriptions of observers and

most principled choice of which is the set of six
misclassification probabilities) form the coordinates of a six-
dimensional ROC space, and the observer’s ROC “surface”
has as many as 5 degrees of freedom. For the ideal observer,
these coordinates are the probabilities of a random decision
variable vector lying in one of a set of three wedge-shaped
regions (7,24); this is analogous to the two-class case, but
the integrals involved in their calculation are far less tractable.
(As for the behavior of nonideal observers, it is not even com-
pletely clear what the general form of the decision function
should be.) To evaluate the performance of such an observer,
one might naively hope to calculate the volume under this
(five-dimensional) ROC surface and use that for comparison
with other observers in a manner analogous to the two-class
AUC. Unfortunately, this quantity was shown not to correlate
in any useful way with intuitive concepts of “performance”
due to degeneracy issues in ideal observer ROC surfaces (25).

This result implies that a performance metric is required
that is not just a simple generalization of AUC. Nevertheless,
since the six misclassification probabilities that form the coor-
dinates of the observer’s ROC surface remain the fundamental
descriptors of the observer’s performance, it is to be expected
that a valid performance metric will still be derived in some
more sophisticated fashion from the ROC surface. Concep-
tual characterization of such a performance metric is not
impossible (26), but regardless of the theoretical details, it is
clear that any such performance metric will require a detailed

description of the observer’s ROC surface. Lacking fully gen-
eral analytic methods for calculating three-class ideal observer
operating points, we can safely assume that numerical or stat-
istical methods will be required—essentially Monte Carlo
methods, since the operating point coordinates are condi-
tional probabilities [i. e., integrals of particular probability
density functions (PDFs) over particular regions]. Of course,
such a statistical operating point estimation method would
need to be validated in practice; this requires, in turn, an ana-
lytic method for calculating the “true” value of the operating
point.

Our most recently published work finally gave Charles
Metz and me hope of breaking this vicious circle; in it, we
fully and analytically characterized the ROC operating point
behavior of a three-class ideal observer acting on univariate
normal underlying data (27). However, unlike the two-class
task for which the sufficient statistic used by the ideal observer
is always univariate, the three-class ideal observer makes use of
a pair of decision variables. To consider the fully general case,
therefore, it is necessary to be able to take into account bivariate
data. That is, while it is perhaps imaginable that a particular
medical imaging task could be found such that the highly mul-
tivariate image data could be classified by an ideal observer
acting on univariate decision variable data, this is highly
unlikely to be true in general. In any case, a fully general
approach would still be needed in to establish that the univari-
ate method was adequate and valid for that particular task.

A brief review of the univariate work is next, along with a
more detailed description of a second special case in which
three-class ideal observer operating points may be calculated
analytically, in the case of bivariate normal data under certain
restrictions on both the data distributions and the form of the
decision rule. The basis of the statistical method for estimating
ideal observer operating points is also described. Then, a set of
simulation studies is described in which analytically calculated
and statistically estimated operating points are compared for a
variety of underlying data distributions and particular choices
of ideal observer decision criteria. The results of these simula-
tions studies are presented later, followed by a discussion of
their implications. The conclusions that can be drawn from
them are finally given. The goals of the present work are to
show that the general validity of the statistical estimation
method can be adopted as a working hypothesis and that
this validity can continue to be evaluated as new analytic
methods (beyond the two considered here) become available.

THEORY

In a two-class classification task, with underlying data x, the
ideal observer makes decisions by comparing a function of
the data, called the likelihood ratio (LR), with a critical
threshold vy. The LR is the ratio of the PDFs of the underlying
data, conditional on the classes from which the data are drawn;
that is, LR(X)=p(X|class 1)/ p(X|class 2). If LR(x)>7,
the observation is called positive, otherwise it is called nega-
tive. (A bold typeface is used to denote random variables.)
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