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Rationale and Objectives: Traditional two-class receiver operating characteristic (ROC) analysis is inadequate for the complete evalua-

tion of observer performance in tasks with more than two classes.

Materials and Methods: Here, a Monte Carlo estimation method for operating point coordinates on a three-class ROC surface is devel-
oped and compared with analytically calculated coordinates in two special cases: (1) univariate and (2) restricted bivariate trinormal under-

lying data.

Results: In both cases, the statistical estimateswere found to be good in the sense that the analytical values laywithin the 95%confidence
interval of the estimated values about 95% of the time.

Conclusions: The statistical estimation method should be key in the development of a pragmatic performance metric for evaluation of

observers in classification tasks with three or more classes.
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R
eceiver operating characteristic (ROC) analysis has,

for many years, been the standard for evaluating

observer performance in a medical decision task

with two classes to which observations belong (1). A particu-

larly familiar example is the canonical radiologic task of iden-

tifying whether an abnormality, such as a fracture or lesion, is

present in an image.

Not all medical, or even radiological, tasks are so readily

restricted to two outcomes, however. A particular task might

require distinguishing among multiple types of abnormality

(2) or distinguishing normal tissue from abnormalities of dif-

ferent types (3), or, in the computer-aided diagnosis (CAD)

task that originally motivated much of the work in this area,

one might need to distinguish malignant and benign actual

lesions from the false-positive detections produced by an auto-

mated scheme (4–6). Traditional two-class ROC analysis is

inadequate for the complete evaluation of observer perform-

ance in such tasks. Unfortunately, although the broader theo-

retical characteristics of observer behavior in a three-class

classification task were outlined many decades ago (7), the

extension of this knowledge to a complete understanding

and the implementation of such knowledge into practical

tools for addressing real clinical problems have remained

elusive.

Why should this be the case? After all, two-class ROC anal-

ysis is successful not just because of its practical usefulness but

also because of the theoretical simplicity and elegance it pos-

sesses. One measures some quality of the objects being classi-

fied and compares this decision variable with a critical

threshold. If the decision variable is above the critical thresh-

old, the object is classified as positive; the fraction of actually

positive objects called positive is the true-positive fraction

(TPF), while the fraction of actually negative objects (incor-

rectly) called positive is the false-positive fraction (FPF).

The FPF and TPF values give the observer’s ROC operating

point at that critical threshold; if a different critical threshold is

chosen, a different operating point is obtained, and the collec-

tion of all (FPF, TPF) pairs for all values of the critical thresh-

old is the ROC curve (1,7,8). The observer that achieves the

best possible ROC performance, given the variability of the

decision variables across the actually positive and negative

populations, is called the ideal observer (7,8). Objectively

comparing two different observers based on their ROC

curves is simple if one curve is always above the other, but it

is problematic if the two curves cross; however, the area

under the ROC curve (AUC) is a readily calculated

quantity that allows such comparison and, furthermore, is

theoretically justifiable since the AUC can be shown to be

the chance of the observer making a correct decision in a

two-alternative forced-choice task (i.e., when presented

with a pair of observations, one actually positive and one
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actually negative, the chance of correctly deciding which is

which) (8). Given a simple model for the underlying data,

the binormal model, ROC curves can be computed under

both assumptions in which the observer’s decision variable is

directly related to the underlying data [the conventional

binormal model (9)] and in which the decision variable is an

ideal observer decision function of the underlying data (the

proper binormal model (10)).

Turning to the three-class task, difficulties appear at the

outset and accumulate at a discouraging rate. The perform-

ance of an observer is characterized by six of the nine possible

conditional classification probabilities given a particular deci-

sion rule (the probabilities of deciding an observation belongs

to one class when it is actually drawn from that or another

class, analogous to TPF and FPF), not three as one might

naively expect (11–15). [The nine classification probabilities

are related by three equations, one for each class, because

they are conditional probabilities (16), just as

TPFþ FNF ¼ 1 where FNF is the false-negative fraction;

thus, three of the classification probabilities may be elimina-

ted, leaving six.] A number of researchers have proposed

applying restrictions to the form of the observer, to reduce

the dimensionality of the performance description from six

to three in a more principled fashion (17–21). However,

despite the resulting observer behavior being consistent with

that of the ideal observer given the restrictions imposed

(22,23), these descriptions of observers and their

performance are nevertheless not fully general. In the

general case, six conditional classification probabilities (the

most principled choice of which is the set of six

misclassification probabilities) form the coordinates of a six-

dimensional ROC space, and the observer’s ROC ‘‘surface’’

has as many as 5 degrees of freedom. For the ideal observer,

these coordinates are the probabilities of a random decision

variable vector lying in one of a set of three wedge-shaped

regions (7,24); this is analogous to the two-class case, but

the integrals involved in their calculation are far less tractable.

(As for the behavior of nonideal observers, it is not even com-

pletely clear what the general form of the decision function

should be.) To evaluate the performance of such an observer,

one might naively hope to calculate the volume under this

(five-dimensional) ROC surface and use that for comparison

with other observers in a manner analogous to the two-class

AUC. Unfortunately, this quantity was shown not to correlate

in any useful way with intuitive concepts of ‘‘performance’’

due to degeneracy issues in ideal observer ROC surfaces (25).

This result implies that a performance metric is required

that is not just a simple generalization of AUC. Nevertheless,

since the six misclassification probabilities that form the coor-

dinates of the observer’s ROC surface remain the fundamental

descriptors of the observer’s performance, it is to be expected

that a valid performance metric will still be derived in some

more sophisticated fashion from the ROC surface. Concep-

tual characterization of such a performance metric is not

impossible (26), but regardless of the theoretical details, it is

clear that any such performance metric will require a detailed

description of the observer’s ROC surface. Lacking fully gen-

eral analytic methods for calculating three-class ideal observer

operating points, we can safely assume that numerical or stat-

istical methods will be required—essentially Monte Carlo

methods, since the operating point coordinates are condi-

tional probabilities [i. e., integrals of particular probability

density functions (PDFs) over particular regions]. Of course,

such a statistical operating point estimation method would

need to be validated in practice; this requires, in turn, an ana-

lytic method for calculating the ‘‘true’’ value of the operating

point.

Our most recently published work finally gave Charles

Metz and me hope of breaking this vicious circle; in it, we

fully and analytically characterized the ROC operating point

behavior of a three-class ideal observer acting on univariate

normal underlying data (27). However, unlike the two-class

task for which the sufficient statistic used by the ideal observer

is always univariate, the three-class ideal observer makes use of

a pair of decision variables. To consider the fully general case,

therefore, it is necessary to be able to take into account bivariate

data. That is, while it is perhaps imaginable that a particular

medical imaging task could be found such that the highly mul-

tivariate image data could be classified by an ideal observer

acting on univariate decision variable data, this is highly

unlikely to be true in general. In any case, a fully general

approach would still be needed in to establish that the univari-

ate method was adequate and valid for that particular task.

A brief review of the univariate work is next, along with a

more detailed description of a second special case in which

three-class ideal observer operating points may be calculated

analytically, in the case of bivariate normal data under certain

restrictions on both the data distributions and the form of the

decision rule. The basis of the statistical method for estimating

ideal observer operating points is also described. Then, a set of

simulation studies is described in which analytically calculated

and statistically estimated operating points are compared for a

variety of underlying data distributions and particular choices

of ideal observer decision criteria. The results of these simula-

tions studies are presented later, followed by a discussion of

their implications. The conclusions that can be drawn from

them are finally given. The goals of the present work are to

show that the general validity of the statistical estimation

method can be adopted as a working hypothesis and that

this validity can continue to be evaluated as new analytic

methods (beyond the two considered here) become available.

THEORY

In a two-class classification task, with underlying data x, the

ideal observer makes decisions by comparing a function of

the data, called the likelihood ratio (LR), with a critical

threshold g. The LR is the ratio of the PDFs of the underlying

data, conditional on the classes fromwhich the data are drawn;

that is, LRð x!Þhpð x!jclass 1Þ= pð x!jclass 2Þ. If LRðxÞ.g,

the observation is called positive, otherwise it is called nega-

tive. (A bold typeface is used to denote random variables.)
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