
Generating Multi-Threaded code from

Polychronous Specifications

Bijoy A. Jose a,1 ,2 , Hiren D. Patelb,3 ,

Sandeep K. Shuklaa,1 ,4 and Jean-Pierre Talpin c,5

a FERMAT Lab
Virginia Polytechnic Institute and State University

Blacksburg, VA, USA

b Ptolemy Group
University of California, Berkeley

Berkeley, CA, USA
c ESPRESSO Project

IRISA/INRIA
Rennes, France

Abstract

SIGNAL, Lustre, Esterel, and a few other synchronous programming language compilers accomplish au-
tomated sequential code generation from synchronous specifications. In generating sequential code, the
concurrency expressed in the synchronous programs is sequentialized mostly because such embedded soft-
ware was designed to run on single-core processors. With the widespread advent of multi-core processors,
it is time for model-driven generation of efficient concurrent multi-threaded code. Synchronous program-
ming models capture concurrency in the computation quite naturally, especially in its data-flow multi-clock
(polychronous) flavor. Therefore, it seems reasonable to attempt generating multi-threaded code from poly-
chronous data-flow models. However, multi-threaded code generation from polychronous languages aimed at
multi-core processors is still in its infancy. In the recent release of the Polychrony compiler, multi-threaded
code generation uses micro-level threading which creates a large number of threads and equally large num-
ber of semaphores, leading to inefficiency. We propose a process-oriented and non-invasive multi-threaded
code generation using the sequential code generators. By noninvasive we mean that instead of changing
the compiler, we use the existing sequential code generator and separately synthesize some programming
glue to generate efficient multi-threaded code. This paper describes the problem of multi-threaded code
generation in general, and elaborates on how Polychrony compiler for sequential code generation is used to
accomplish multi-threaded code generation.

Keywords: Synchronous Programming Model, Polychrony, SIGNAL, Multi-core, Multi-threading,
Embedded software, Synthesis

1 This work is supported by NSF Grant CCF-0702316
2 Email: bijoy@vt.edu
3 Email: hiren@eecs.berkeley.edu
4 Email: shukla@vt.edu
5 Email: jean-pierre.talpin@irisa.fr

Electronic Notes in Theoretical Computer Science 238 (2009) 57–69
www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2008.01.006
1571-0661/© 2009 Elsevier B.V. Open access under CC BY-NC-ND license.

mailto:bijoy@vt.edu
mailto:hiren@eecs.berkeley.edu
mailto:shukla@vt.edu
mailto:jean-pierre.talpin@irisa.fr
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/


1 Introduction

In the last few years, parallel processing has claimed its niche in improving perfor-

mance and power trade-off [12] for general purpose computing. So, it is no surprise

that multi-core architectures will make inroads into the embedded processor mar-

kets as well. Currently, major processor vendors have already released products

containing multiple cores on a single die [11], however, one must employ concurrent

programming models when designing their programs to exploit the architecture with

multiple cores in such products. One such programming model, and one that most

designers are familiar with, is the multi-threaded programming model.

This multi-threaded programming model is commonly used in providing uni-

processor architectures with concurrency, and thus it is one candidate for true par-

allelism with parallel processing architectures. However, due to our long association

with the von Neumann sequential programming models, it is often hard to write

correct multi-threaded code [15]. Usually, writing such code involves expressing the

computation as a collection of tasks, analyzing their dependencies, finding concur-

rency between the tasks, finding synchronization points, and then expressing all

those with the programming idioms available in a language of one’s choice.

We limit our discussion on multi-threaded programming for multi-core architec-

tures with the C programming language, which to many, naturally implies the use

of POSIX thread primitives or some other threading library APIs. Since writing

multi-threaded C-code for a computation specified in sequential manner is hard, it

would be easier if a concurrent model of computation was used instead, to specify

the computation. For example, Petri nets may be used to specify the computation.

With a highly concurrent Petri net model for a given computation, one could dis-

cover concurrency, synchronization points etc, much more readily when compared

to standard C multi-threaded programming.

However, Petri nets have their own limitations as a specification formalism.

First, one could unintentionally go very close to the implementation model in the

Petri net itself, by sequentializing some transitions unnecessarily, and thereby elim-

inating possibility of concurrency. Figure 1 describes one such scenario where in

Net 1, there is concurrency between tasks T1 and T2, but in Net 2, the concurrency

is eliminated by ordering them. The application being modeled in this example may

have had no reason to sequentialize the two tasks T1 and T2, except that the mod-

eler had made a decision to do so. Also, since Petri nets are graphical formalism,

often it is hard to manage for large scale programs.

An alternative to Petri nets is to use the dataflow models of computation, where

the variables are considered as infinite sequences of data values, and the valuation

from one step to the next is done by various operations on the data streams. The

concurrency is usually difficult to sequentialize inadvertently in such specifications,

because one has to explicitly impose special scheduling relations to sequentialize two

operations. Polychronous languages and in particular in this paper, SIGNAL, are

examples of such dataflow languages that have the notion of rate of data arrival,

and multi-rate data value computation built into the language. These rates are

B.A. Jose et al. / Electronic Notes in Theoretical Computer Science 238 (2009) 57–6958



Download English Version:

https://daneshyari.com/en/article/421854

Download Persian Version:

https://daneshyari.com/article/421854

Daneshyari.com

https://daneshyari.com/en/article/421854
https://daneshyari.com/article/421854
https://daneshyari.com

