Available online at www.sciencedirect.com

ScienceDirect Therotieal Comter

Science

&S,
ELSEVIER Electronic Notes in Theoretical Computer Science 262 (2010) 127-139
www.elsevier.com/locate/entcs

Spartacus: A Tableau Prover for Hybrid Logic

Daniel Goétzmann! Mark Kaminski! Gert Smolka!

Saarland University
Saarbricken, Germany

Abstract

Spartacus is a tableau prover for hybrid multimodal logic with global modalities and reflexive and transitive
relations. Spartacus is the first system to use pattern-based blocking for termination. To achieve a compet-
itive performance, Spartacus implements a number of optimization techniques, including a new technique
that we call lazy branching. We evaluate the practical impact of pattern-based blocking and lazy branching
for the basic modal logic K and observe high effectiveness of both techniques.

Keywords: hybrid logic, modal logic, tableau algorithms, decision procedures, automated reasoning

1 Introduction

Automated reasoning in modal and description logics (DL) is an active field
of research. Arguably the most successful approach to modal reasoning are
tableau-based methods. Several of the most prominent DL reasoners, including
FaCT++ [31] and RacerPro [14], are based on tableau algorithms. In the presence
of global modalities or transitive relations, the naive tableau construction strategy,
sufficient in the case of basic modal logic, no longer terminates. To regain termi-
nation, one employs blocking [22]. Most of the established blocking techniques are
derived from Kripke’s chain-based approach [24]. Kaminski and Smolka [21,22] pro-
pose a different blocking technique, called pattern-based blocking. They conjecture
that pattern-based blocking may display a better performance than the established
techniques. Our goal is to show that pattern-based blocking is useful even for K,
where blocking is not required for termination.

Spartacus is a tableau prover for hybrid multimodal logic with global modali-
ties. It supports reasoning in the presence of reflexive and transitive relations. In
contrast to other systems, Spartacus uses pattern-based blocking to achieve termi-
nation. Similarly to FaCT++ [30,31,32], Spartacus schedules pending rule appli-

! Email: {goetzmann,kaminski,smolka}@ps.uni-sb.de

1571-0661 © 2010 Elsevier B.V. Open access under CC BY-NC-ND license.
doi:10.1016/j.entcs.2010.04.010

mailto:goetzmann@ps.uni-sb.de,kaminski@ps.uni-sb.de,smolka@ps.uni-sb.de
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/

128 D. Gotzmann et al. / Electronic Notes in Theoretical Computer Science 262 (2010) 127-139

cations using a configurable priority queue, which allows for a fine-grained control
over the rule application strategy. To achieve a reasonable performance on realistic
inputs, Spartacus implements a number of optimizations, including term simplifi-
cation (also called “normalization” [17]), Boolean constraint propagation, semantic
branching and backjumping [32]. Moreover, Spartacus implements a new technique,
called lazy branching. Lazy branching is a generalization of lazy unfolding [32], an
effective optimization technique from DL reasoning.

Spartacus is written in Standard ML and compiled with MLton. The source
code and test data are available from www.ps.uni-sb.de/theses/goetzmann/. A
detailed description of Spartacus can be found in [12].

We evaluate the effects of pattern-based blocking and lazy branching, and com-
pare the performance of Spartacus with that of other reasoners for modal and de-
scription logics. Both techniques prove highly effective.

2 The Logic

Spartacus decides the satisfiability problem for H(E, @), the basic hybrid logic ex-
tended with global modalities. Notationally, our description of H(E, @) follows [21].
We distinguish between variables for states (x, y), properties (p, q), and relations (r).
From these variables, the ezpressions of H(E, @) can be obtained by the following
grammar:
s;t = T |p|d|=s|sAs|(r)s| Es|Qus

We employ the usual abbreviations sV ¢ := =(-s A=t), [r]s := =(r)=s, and As :=
- E+s. For details on H(E, @) and related logics, see [1].

In addition to expressions of the above form, Spartacus accepts reflexivity and
transitivity assertions of the form Reflexive r and Transitiver.

Except for the details of the blocking mechanism, the calculus underlying Spar-
tacus is a restriction of the system in [22] to H(E,@). The calculus works on
formulas of the form sz where s is a negation normal expression of H(F, @) and z
a state. The use of the state variable x in a formula sz corresponds to the use of
prefizes [6] or nodes [19] in related calculi. Since for later discussion the treatment
of equality in Spartacus is inessential, let us consider the following restriction of the
calculus to K.

pz, (4p)x (sAt)x (sVit)x ({r)s)x ([r]s)zx, ray

- A v S y fresh Rao
1 sz, tx st | tx rTyY, SY sy

The symbol | marks closed branches. The formula rzy specifies that y has to be
accessible from x, corresponding to the notation = O,y in [6] and (z,y) € Ea(r)
in [19].

3 Pattern-Based Blocking

Pattern-based blocking (PBB) in Spartacus is implemented following [21]. The
technique yields termination in the presence of nominals, transitive relations, global

http://www.ps.uni-sb.de/theses/goetzmann/

Download English Version:

https://daneshyari.com/en/article/421880

Download Persian Version:

https://daneshyari.com/article/421880

Daneshyari.com

https://daneshyari.com/en/article/421880
https://daneshyari.com/article/421880
https://daneshyari.com

