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Rationale and Objectives: We showed previously that maximum-likelihood (ML) and Bayesian (with a flat prior on a common parameter-

ization of the model) estimates of ‘‘proper’’ binormal receiver operating characteristic (ROC) curves produce similar results. We propose

a new prior that is flat over the area under the ROC curve (AUC) and investigate its effect on the Bayesian estimates.

Materials and Methods: In two simulation studies, we compared Bayesian estimation of the AUC with the two prior probability distribu-

tions against ML estimation in terms of root mean squared error (RMSE) and the coverage of 95% confidence (or credible) intervals (both

abbreviated CIs). In the first study, we simulated categorical data that tend to be ‘‘well-behaved’’ and produce ROC curve estimates that
most would consider reasonable. In the second study, we simulated coarsely discretized categorical data that often included so-called

degenerate datasets that cause the ML estimate to be the perfect ROC curve.

Results: For the well-behaved datasets, all three AUC estimates were similar in terms of RMSE and 95% CI coverage. For the coarsely
discretized datasets, the RMSE of ML was consistently greater than that of Bayesian estimation and the 95% CI coverage of ML estimation

was consistently below nominal, whereas the 95% CI coverage of Bayesian estimation was consistently equal to, or greater than, nominal.

Conclusion: Bayesian estimation with a flat prior on the AUC can provide reasonable inference from datasets with coarsely categorized

data that are prone to be degenerate and produce results similar to other estimation methods on well-behaved datasets.
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R
eceiver operating characteristic (ROC) analysis is

a fundamental method for the evaluation of diag-

nostic accuracy (1–3). An ROC curve is a plot of

true-positive fraction (TPF, or sensitivity) versus false-

positive fraction (FPF, or 1-specificity). The conventional

binormal model for ROC analysis provides satisfactory

ROC curve fits in a wide variety of practical situations

(4–7). However, except for ROC curves that are

symmetrical with respect to the negative 45� line in the

ROC plot, the conventional binormal model produces

ROC curve estimates that contain ‘‘hooks’’ (ie, a change in

the ROC curve curvature [eg, from convex to concave],

which for the conventional binormal model implies that

a portion of the ROC curve falls below the ‘‘guessing line’’

defined by TPF = FPF). These ROC curve estimates are

considered unsatisfactory because hooks indicate diagnostic

accuracies that are worse than guessing (8–10). ROC

models that describe ROC curves guaranteed to have

a monotonically decreasing slope are known as ‘‘proper’’

ROC models (3). In this article, we focus on the so-called

‘‘proper’’ binormal model (11,12).

Previously (Zur RM, unpublished data, 2010),we compared

maximum-likelihood (ML) and Bayesian estimates of ‘‘proper’’

binormal ROC curves. The Bayesian estimates were based on

a prior probability distribution that is flat (ie, constant) over

the most common parameterization of the proper binormal

model (11). Prior probability distributions are a well-known

characteristic of Bayesian estimation and they incorporate

information obtained independently from the data at hand

(13,14). Because of that, priors are expected either to

improve estimations or to bias them. We showed (Zur RM,

unpublished data, 2010) that the Bayesian and ML estimates

are similar in terms of root mean squared error (RMSE) for

the area under the ROC curve (AUC), TPF values at fixed
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FPFvalues and FPF values at fixedTPF values. In this article, we

evaluate the effect on Bayesian estimation of proper binormal

ROC curves of a new prior that is not flat over the most

common parameterization of the proper binormal model but,

rather, flat over the AUC values. We refer to both of these flat

priors as low information because they do contain information

(as will be demonstrated later through reparameterization)

and can affect ROC analysis. Our motivation was that,

whereas a prior flat on the curve parameters is expected to

influence minimally the estimation of the curve parameters,

it is probably more desirable to influence minimally the

estimation of the AUC—the most commonly reported ROC

summary index in radiological research (15). It is not possible

to impose a prior that is simultaneously flat on both the curve

parameters and the AUC because the curve parameters and

the AUC are nonlinear functions of each other (16). Therefore,

a tradeoff is unavoidable. Although the effect of prior informa-

tion or preconceived views is usually not discussed in the

context of ROC curve estimation, a review of the radiological

literature that reports ROC analysis shows that prior experi-

ence and belief do seem to influence our understanding and

acceptance of ROC curve estimates (15).

BACKGROUND

The ‘‘Proper’’ Binormal ROC Model

The proper binormal ROC model introduced by Metz et al

(11,12) is usually specified by two parameters: da and c,

which define the signal-present and signal-absent distribu-

tions of cases with respect to a latent decision variable, v (for

details refer to Metz et al (11)). The minimum of the AUC

value (0.5) occurs when da = 0 and c = 0, and the AUC value

increases when either da increases toward infinity or jcj
increases toward 1, or both. The ROC curve is symmetrical

around the negative 45� line in the ROC plot when c = 0,

whereas the ROC curve is skewed toward the left (ie, toward

the ordinate) when c < 0 and toward the right with respect to

the negative 45� line in the ROC plot (ie, toward the line

defined by TPF = 1) when c > 0.

In this article, we treat all ROC data as ordinal-categorical,

because the limited precision of real-world quasi-continuous

data implies that they can be mapped to some ordinal-

categorical data without loss of information relevant to

ROC analysis. We partition the latent decision variable axis

into I categories with I-1 cut-points, vci, i = 1, 2, ., I-1, here-

after denoted by {vci} (17–19). If necessary, we reduce the

number of categories to I # 20 using the LABROC5

algorithm (20), which appears to affect the bias and variance

of ML estimates negligibly as long as at least 20 categories are

used (12,20). As is customary, we consider these cut points as

nuisance parameters because we are more interested in

estimating the ROC curve than in estimating the cut points.

Therefore, the likelihood function—the probability of the

data conditional on the model—assumes that the ROC data

are obtained through multinomial sampling (20).

ML Estimation of the ‘‘Proper’’ Binormal ROC Model

Let us denote the likelihood function by L(da, c, {vci}; D) =

p(D j da, c, {vci}), where the semicolon indicates that the like-

lihood function is dependent, but not conditional, on the

data, D. The ML estimate is the set of parameter values, da,

c, and {vci} that maximizes L(,). Uncertainty in da, c, and

{vci} can be estimated from the inverse of the Fisher informa-

tion matrix (21). Uncertainty in other quantities of interest

(eg, the AUC, TPF, and FPF) can be estimated from the

Fisher information matrix using the delta method (16). An

extensive discussion on this likelihood function, the ML esti-

mate, and the estimate of the variance-covariance matrix can

be found elsewhere (12).

Bayesian Estimation of the ‘‘Proper’’ Binormal ROC
Model

From Bayes’ rule, the posterior probability distribution of the

proper binormal model parameters is given by

pðda; c; {vci}jDÞ ¼
Lðda; c; {vci}; DÞpðda; c; {vci}Þ

pðDÞ ; (1)

where p(da, c, {vci}) is the prior probability distribution and

p(D) is the marginal likelihood (13). The marginal likelihood

can be considered as a normalization constant, which does not

affect most estimates of the posterior probability distribution

(13). Therefore, Bayesian estimation focuses on the proba-

bility of the model given the data (ie, the posterior probability

distribution), rather than on the probability of the data given

a model (ie, the likelihood function). However, as shown in

equation (1), a prior probability distribution is required to

estimate the posterior probability distribution. It is not always

clear what the best or even a reasonable prior probability

distribution is. Furthermore, we are often interested in indices

that are different from, or in addition to, the parameters that

we estimate directly. In such instances, even after necessary

transformations (16), we sometimes find that a prior proba-

bility distribution that is reasonable for one set of parameters

does not appear to be reasonable for other parameters of

interest. Moreover, to estimate a high-dimensional, nonstan-

dard, probability distribution, as is often required with

Bayesian estimation, can be computationally challenging.

Here, we use Markov chain Monte Carlo (MCMC) algo-

rithms for that purpose (22).

MCMC Estimation of the Bayesian Posterior Probability
Distribution

MCMC is a common approach to obtaining random samples

from probability distributions, even of large dimensions

(eg, >10) (22–24). MCMC algorithms are well-suited for

Bayesian estimation of ROC curves because the estimation

can involve a large number of dimensions due to potentially

large numbers of the cut points, {vci}. With MCMC
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