Available online at www.sciencedirect.com

. . Electronic Notes in
| SCI e n Ce D I reCt Theoretical Computer
08 j;' = Science
ELSEVIER Electronic Notes in Theoretical Computer Science 224 (2009) 3-14

www.elsevier.com/locate/entcs

Animalipse - An Eclipse Plugin for
AnimalScript

Guido Rofling!

CS Department
TU Darmstadt
Darmstadt, Germany

Peter Schroeder?

CS Department
TU Darmstadt
Darmstadt, Germany

Abstract

The algorithm animation language ANIMALSCRIPT, while highly expressive and versatile, is not easy to edit
with no editor support. We have developed an Eclipse plugin for editing ANIMALSCRIPT that includes a
text editor, outline, and code assist. We expect that this plugin will make the editing process much easier
and faster. The paper presents both technical aspects of the development and the resulting plugin.

Keywords: AnimalScript, Animal, Eclipse, Plugin, Animalipse

1 Introduction

ANIMAL [5] is a versatile system for creating, modifying and presenting algorithm
animations and visualizations (AV content). As far as we know, it is the only AV
system that allows users to create AV content using all of the following approaches:

* visually using drag and drop in a novice-friendly graphical user interface [§],
* textually using the highly expressive ANIMALSCRIPT language [7,9],
e employing a new Java-based generation API,

* using a set of external applications for generating context-specific animations for
trees [10] as well as for graphs and graph algorithms [3,11],

Email: roessling@acm.org
Email: sevenclev@gmx.net

1571-0661/© 2008 Elsevier B.V. Open access under CC BY-NC-ND license.
doi:10.1016/j.entcs.2008.12.044


mailto:roessling@acm.org
mailto:sevenclev@gmx.net
mailto:roessling@acm.org
mailto:sevenclev@gmx.net
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/

4 G. Ropling, P. Schroeder / Electronic Notes in Theoretical Computer Science 224 (2009) 3—14

e as well as using one of the currently more than 200 animation generators of the
built-in generator framework [6]. Note that the number of generators does not
necessarily indicate the number of algorithms covered, but rather the different
“flavors” for the given algorithms, such as the choice of the programming language
and the output language used for the presentation.

All generation approaches except for the first are directly or indirectly based on
using ANIMALSCRIPT, which is in the process of taking over the role of the preferred
representation of ANIMAL AV content from the built-in ASCII notation. The rea-
sons for this development are the human-readable notation of ANIMALSCRIPT, the
ease with which it can be generated from programs and edited manually, and the
expressiveness of the language. Since 2008, ANIMAL also includes an integrated dis-
play of the BNF-based definition of the ANIMALSCRIPT notation, as well as (since
2006) a small text editor for directly entering or modifying ANIMALSCRIPT input
and visualizing the results.

ANIMALSCRIPT files contain one command per line, such as a definition of a new
graphical object or a transformation of some objects. The animation is organized
in steps, each of which can contain one or more commands. If multiple commands
are used in a step, the step is surrounded by curly braces { }. Please see [9,7] for
more information about ANIMALSCRIPT.

Many of the other established AV systems also cover some of the generation
approaches listed above. For example, JAWAA2 [1] and the GAIGS and JSamba [12]
visualization engines used by JHAVE [4] also use a scripting language. JAWAA2 also
offers a visual editor in its current release. JHAVE offers a set of content generators
that are similar to the approaches offered in ANIMAL’s generator framework and
can be run off the web. However, they focus on specifying algorithm parameters,
and thus do not allow the definition of visual properties such as colors.

While ANIMALSCRIPT can be edited easily using ANIMAL’s built-in editor or any
arbitrary text editor, the comfort offered by this is somewhat lacking. The internal
editor only offers rudimentary editing features; cut, copy and paste features are only
supported by using the underlying operating system support. The editor does not
offer a search facility, display of line numbers, indication of recognized syntactical
or semantical errors, or syntax highlighting. Thus, editing a longer ANIMALSCRIPT
file is awkward and can become frustrating if the system indicates a parsing problem
“in line 117”. Despite (usually) precise information about the nature of the error,
the lack of line numbers, search or “go to line” functions makes locating and fixing
the error a tedious and less than enjoyable process.

We decided that his unsatisfying state needed addressing. Essentially, we saw
three different approaches to provide better user support: improve the built-in editor
to be comparable in comfort to the user’s preferred text editor, create a new custom
editor for ANIMALSCRIPT content, or provide ANIMALSCRIPT bindings for at least
one commonly used text editor. It did not seem useful to invest much effort only
to improve the built-in editor so that it would be comparable to, but still different
from, a given user’s preferred text editor. The same applied to creating a new
custom editor. Therefore, we opted to provide ANIMALSCRIPT bindings for at least



Download English Version:

https://daneshyari.com/en/article/421932

Download Persian Version:

https://daneshyari.com/article/421932

Daneshyari.com


https://daneshyari.com/en/article/421932
https://daneshyari.com/article/421932
https://daneshyari.com

