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Rationale and Objectives: A basic assumption for a meaningful diagnostic decision variable is that there is a monotone relationship
between the decision variable and the likelihood of disease. This relationship, however, generally does not hold for the binormal model.

As a result, receiver operating characteristic (ROC)-curve estimation based on the binormal model produces improper ROC curves that

are not concave over the entire domain and cross the chance line. Although in practice the ‘‘improperness’’ is typically not noticeable, there

are situations where the improperness is evident. Presently, standard statistical software does not provide diagnostics for assessing the
magnitude of the improperness.

Materials and Methods: We show how the mean-to-sigma ratio can be a useful, easy-to-understand and easy-to-use measure for

assessing the magnitude of the improperness of a binormal ROC curve by showing how it is related to the chance-line crossing. We
suggest an improperness criterion based on the mean-to-sigma ratio.

Results: Using a real-data example, we illustrate how the mean-to-sigma ratio can be used to assess the improperness of binormal ROC

curves, compare the binormal method with an alternative proper method, and describe uncertainty in a fitted ROC curve with respect to
improperness.

Conclusions: By providing a quantitative and easily computable impropernessmeasure, themean-to-sigma ratio provides an easyway to

identify improperbinormalROCcurvesand facilitates comparisonof analysis strategies according to improperness categories in simulation

and real-data studies.
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F
or diagnostic studies that evaluate and compare medical

imaging modalities (eg, mammography) that require

a human reader (typically a radiologist) to interpret

generated images with respect to disease likelihood or severity,

a commonly used method for estimating a receiver operating

characteristic (ROC) curve is to use maximum likelihood

estimation based on the assumption of a latent binormal

model (1–4); we refer to this method as the binormal method.

The latent binormal model assumption states that there

exists a monotone transformation that, when applied to the

decision variable of interest, results in a latent decision

variable that is normally distributed for nondiseased cases as

well as for diseased cases, with the means and variances

allowed to differ for the two distributions. For example,

consider a study where a radiologist is asked to assign

likelihood-of-disease confidence levels to images using

a discrete five-level ordinal integer scale (eg, 1 = ‘‘definitely

not diseased’’,., 5 = ‘‘definitely diseased’’); for this situation,

it is typical to assume that these ratings represent the binning

of values of a latent (ie, unobserved) continuous decision

variable representing the reader’s likelihood-of-disease

perception. Often the ROC-curve summary measure of

interest is the area under the curve (AUC).

For large samples, the binormal method has been shown to

perform well for decision variable distributions that can vary

greatly from the binormal distribution (5–8). We refer to the

ROC curve corresponding to a latent binormal model

decision variable as the binormal ROC curve. Throughout, we

assume that the decision variable of interest is continuous

and that larger values of it are more indicative of disease.

In most practical situations, a meaningful decision variable

should be an increasing function of the likelihood ratio (likeli-

hood of being diseased divided by likelihood of not being

diseased) (9). A decision variable model having this property

and its corresponding ROC curve are said to be proper (10).

A function whose first derivative is decreasing throughout an

open interval is called concave or concave downward in that interval,
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and a functionwhose first derivative is increasing throughout an

open interval is called convex or concave upward in that interval

(11). Because the slope of a ROC curve for a continuous deci-

sionvariable is equal to the likelihood ratio at the corresponding

threshold, it follows that the slope of a proper ROC curve

decreases as the false-positive fraction (fpf) increases, that is,

a proper ROC curve will be concave everywhere (0 # fpf

# 1) (9). If the decision variable is not an increasing function

of the likelihood function, then its model and corresponding

ROC curve are said to be improper (10).

The latent binormal model is improper if the nondiseased

and diseased distribution variances differ; furthermore, there

is a single fpf value such that the ROC curve is concave on

one side and convex on the other side (9). In addition, as

we show later, there is a single fpf value where the ROC curve

crosses the chance line, implying that for a range of fpf values

the decision variable performs worse than guessing.

Although binormal model ROC curves are improper

unless the diseased and nondiseased variances are equal, in

practice the ‘‘improperness’’ is so small that it is not apparent

when looking at the ROC curve. However, there are situa-

tions when the improperness is apparent, with the ROC

curve visibly crossing below the chance line and having an

obvious ‘‘hook.’’ For these situations, we deem the ROC

curve and its corresponding binormal model to be noticeably

or slightly improper, depending on how easily the improper-

ness can be seen. Pan and Metz (12) note that ‘‘because

ROC curves do not show shapes of this kind when they

are estimated from reliable data sets, hooks and degeneracy

can be considered artifacts of the conventional binormal

ROC model.’’

Presently, researchers often ignore or do not check for

improperness in fitted binormal ROC curves, even though

there canbe situationswhere themagnitudeof the improperness

is large enough to make the validity of conclusions based on the

improper ROC curve questionable. Furthermore, standard

statistical software packages do not provide any diagnostics for

assessing the magnitude of the improperness; thus, the

researcher can only know the extent of the improperness from

visually examining ROC-curve plots, which often is not done

when the researcher is primarily interested in an ROC-curve

summary index, such as the AUC.

There is not general agreement on an appropriate analysis

strategy for ROC data that will satisfactorily account for the

inherent improperness of binormal ROC curves. At one end

of the spectrum is the strategy of using the binormal method

and ignoring any improperness in resulting ROC curves, and

at the other end is the strategy of always using a proper method

that never results in improper ROC curves. In between are

other strategies, such as using a proper method only when the

binormal method produces a clearly visible improper ROC

curve. Although improperness can be visually assessed from

graphs, a discussion of the different analysis strategies requires

a quantitative improperness measure that is easy to compute

and interpret. Our purpose is to investigate the properties of

the mean-to-sigma ratio as a quantitative measure of improper-

ness. However, we do not attempt to discuss which analysis

strategy should be used, because that would require separate

treatment.

In summary, our main purpose is to show how the mean-to-

sigma ratio can be a useful, easy-to-understand, and easy-to-use

measure for assessing the magnitude of the improperness of

binormal ROC curves. The outline of the article is as follows.

We illustrate the inherent improperness of the binormal model

with an example, show how the mean-to-sigma ratio can be

used as a measure for assessing the degree of improperness,

and discuss alternative proper models. Using data from a multi-

reader multimodality study, we illustrate the usefulness of the

mean-to-sigma ratio for assessing improperness and for

comparing the binormal method with an alternative method

based on a proper model.

MATERIALS AND METHODS

Example of a Noticeably Improper Binormal ROC Curve

To illustrate the inherent improperness in binormal ROC

curve estimation, consider Table 1, which shows the rating

data for one reader from a study (13) that will be described

in more detail in the Results section. Figure 1 shows the

corresponding fitted binormal ROC curve; note that there

is a visible hook and chance-line crossing near the upper

right-hand corner of the unit square. In Figure 1 the ROC

curve crosses the chance line at the point (fpf, tpf) = (0.976,

0.976), where tpf stands for true-positive fraction, shown by

the intersection of the ‘‘crossing’’ reference line with the

ROC curve. Furthermore, this ROC curve is concave for

fpf < 0.735, but is convex for fpf > 0.735. Letting ROC(t)

denote the tpf corresponding to fpf = t, the point

(.735,ROC(.735)) on the ROC curve separates the concave

and convex portions of the curve and thus is an inflection point;

this point is shown by the intersection of the ‘‘inflection’’

reference line and the ROC curve in Figure 1.

In general wewill denote the fpf = tpf valuewhere the ROC

curve crosses the chance line by t0 and refer to t0 as the chance-line

crossing fpf; similarly,wewill denote the fpf valuewhere theROC

curve changes from convex to concave (for either increasing or

decreasing fpf) by t1 and refer to t1 as the inflection-point fpf. (More

precisely, t1 is the fpf coordinate of the inflection point.) For

example, in Figure 1 the chance-line crossing fpf is t0 = .976

and the inflection-point fpf is t1 = .735.

Figure 2 shows the latent nondiseased and diseased distribu-

tion densities that yield the ROC curve in Figure 1, with y

TABLE 1. RatingData for aRadiologist fromVanDykeet al (13)

Rating

1 2 3 4 5 Total

Normal 39 19 9 1 1 69

Diseased 7 7 3 5 23 45
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