
Extending Constructive Logic Negation

with Types

Susana Munoz-Hernandez1 ,2

Babel Group,
Facultad de Informática, Universidad Politécnica de Madrid.

Campus de Montegancedo. Boadilla del Monte. Madrid-28660, Spain

Juan José Moreno-Navarro 3

IMDEA-Software & Universidad Politécnica de Madrid.
Campus de Montegancedo. Boadilla del Monte. Madrid-28660, Spain

Abstract

Negation has traditionally been a difficult issue in Logic Programming. Most of Prolog programmers have
been restricted to use just a weak negation technique, like negation as failure.
Many alternative semantics were proposed for achieving constructive negation in the last 20 years, but no
implementation was provided so far because of its exponential complexity and the difficulty for developing
it. First effective implementations of constructive negation into standard Prolog compilers are available just
recently, around 2003, provided by our previous works.
In this paper we present an extension of our implementations by introducing types in programs, thus
improving usability as well as efficiency in some cases of our implementations of constructive negation.
This can make constructive negation an interesting approach for its use in data bases querying, web search,
filtered search, ontologies querying, coding rules, business rules, etc.
Thanks to the use of types, our constructive negation can provide concrete values as results, instead of
constraints (as in our previous works). We provide details about the semantics and the implementation
in our approaches of classical, finite constructive, and intensional negation. The paper also includes some
practical examples additionally allowing for providing measurements of computational behavior.

Keywords: Logic Programming Implementation, Negation, Types, Constraint Logic Programming,
Constructive Negation, Non-monotonic Reasoning.

1 Introduction

The beginning of logic is tied with that of scientific thinking. Its application for

modeling human reasoning is clear as a programming language. But one of the main

elements of logic, that is negation, is hardly represented in Logic Programming.

1 This work is partially supported by the project DESAFIOS - TIN 2006-15660-C02-02 from the Spanish
Ministry of Education and Science and project PROMESAS - S-0505/TIC/0407 from Comunidad de Madrid.
2 Email: susana@fi.upm.es
3 Email: jjmoreno@fi.upm.es

Electronic Notes in Theoretical Computer Science 246 (2009) 183–198
www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2009.07.022
1571-0661 © 2009 Elsevier B.V. Open access under CC BY-NC-ND license.

mailto:susana@fi.upm.es
mailto:jjmoreno@fi.upm.es
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/


1.1 Logic Programming and Negation

Negation is probably the most significant aspect of logic that was not included

from the outset. Dealing with negation involves significant additional complexity.

Nevertheless, the use of negation is very natural and plays an important role in

many knowledge representation and reasoning systems, like web semantics, natural

language processing, constraints management in databases, program composition,

manipulation and transformation, coding rule checking, business rules, default rea-

soning, negative queries (search of false information), etc.

There are many ways of understanding and incorporating negation into Logic

Programming, the problems really start at the semantic level, where the different

proposals differ not only in the semantics but also as to expressiveness. Unfor-

tunately, current Prolog 4 compilers support a very limited number of negation

techniques: negation as failure under Fitting/Kunen semantics [9] (sound only un-

der some circumstances usually not checked by compilers) which is a built-in in

most Prolog compilers (Quintus, SICStus, Ciao, BinProlog, etc.), and the “delay

technique” (applying negation as failure only when the variables of the negated goal

become ground, which is sound but incomplete due to the possibility of floundering)

which is present in Nu-Prolog, Gödel, and Prolog systems that implement delays

(most of the above).

Among all proposals, constructive negation [5,21] (that we will call classical

constructive negation) is probably one of the most promising because it has been

proved to be sound and complete, and its semantics is fully compatible with the

Prolog one. A previous paper [4] provided a simpler variant for negating goals that

have a finite number of solutions (that we will call finite constructive negation).

Another interesting approach, different to these ones, is the transformation proposed

by Barbuti et all [2] that we will call intensional constructive negation. In the paper

we will use these three approaches.

Attending to what we have expounded in this section, it is clear the interest for

achieving a sound and complete implementation for these techniques. Constructive

negation was, in fact, announced in early versions of the Eclipse Prolog compiler,

but was removed from the latest releases. The reasons seem to be related to some

technical problems with the use of coroutining (risk of floundering) and the man-

agement of constrained solutions. We are trying to fill a long time open gap in

this area (remember that the original papers are from late 80s) facing the prob-

lem of providing a correct, effective and complete implementation, integrated into

a standard Prolog compiler.

It was just during the last years [15,14] when we have provided effective im-

plementations of some constructive negation techniques 5 . Here in this paper we

improve the expressiveness and usability of our implementations of classical, finite

and intensional constructive negation by including types.

4 We understand Prolog as depth-first, left to right implementation of SLD resolution for Horn clause
programs, ignoring, in principle, side effects, cuts, etc.
5 More details about differences in between the constructive negation techniques can be found at [15,14]

S. Munoz-Hernandez, J.J. Moreno-Navarro / Electron. Notes Theor. Comput. Sci. 246 (2009) 183–198184



Download English Version:

https://daneshyari.com/en/article/422070

Download Persian Version:

https://daneshyari.com/article/422070

Daneshyari.com

https://daneshyari.com/en/article/422070
https://daneshyari.com/article/422070
https://daneshyari.com

