Available online at www.sciencedirect.com

ScienceDirect Theoretical Comuter

Science

AL

EVIER Electronic Notes in Theoretical Computer Science 203 (2008) 21-36
www.elsevier.com/locate/entcs

EL

Fusing a Transformation Language with an
Open Compiler

Karl Trygve Kalleberg !

Department of Informatics, University of Bergen,
P.O. Boz 7800, N-5020 BERGEN, Norway

Eelco Visser 2

Department of Software Technology, Faculty of Electrical Engineering, Mathematics and Computer
Science, Delft University of Technology, The Netherlands

Abstract

Program transformation systems provide powerful analysis and transformation frameworks as well as con-
cise languages for language processing, but instantiating them for every subject language is an arduous
task, most often resulting in half-completed frontends. Compilers provide mature frontends with robust
parsers and type checkers, but solving language processing problems in general-purpose languages without
transformation libraries is tedious. Reusing these frontends with existing transformation systems is there-
fore attractive. However, for this reuse to be optimal, the functional logic found in the frontend should be
exposed to the transformation system — simple data serialization of the abstract syntax tree is not enough,
since this fails to expose important compiler functionality, such as import graphs, symbol tables and the
type checker.

In this paper, we introduce a novel and general technique for combining term-based transformation systems
with existing language frontends. The technique is presented in the context of a scriptable analysis and
transformation framework for Java built on top of the Eclipse Java compiler. The framework consists of an
adapter automatically extracted from the abstract syntax tree of the compiler and an interpreter for the
Stratego program transformation language. The adapter allows the Stratego interpreter to rewrite directly
on the compiler AST. We illustrate the applicability of our system with scripts written in Stratego that
perform framework and library-specific analyses and transformations.

Keywords: compiler scripting; strategic programming; program transformation

1 Introduction

Developing and maintaining frameworks and libraries is at the core of software de-
velopment: all domain abstractions of software applications are invariably encoded
into libraries of a given programming language. Maintenance of this code involves
various language processing tools such as compilers, editors, source code navigators,

! Email: karltk@ii.uib.no
2 Email: visser@acm.org

1571-0661 © 2008 Elsevier B.V. Open access under CC BY-NC-ND license.
doi:10.1016/j.entcs.2008.03.042


mailto:karltk@ii.uib.no
mailto:visser@acm.org
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/

22 K.T. Kalleberg, E. Visser / Electronic Notes in Theoretical Computer Science 203 (2008) 21-36

documentation generators, style checkers and static analysis tools. Unfortunately,
most of these tools only have a fixed repertoire of functionality which seldom cov-
ers all the needs of the developer of a given library or framework. Relatively few
processing tools can quickly and easily be programmed, extended or adapted by
the library developer. This often drives developers to implement many additional,
text-based tools from scratch. A preferable solution would be for library developers
to quickly write custom scripts in a suitable scripting language and thus imple-
ment analyses and transformations specific to their own code bases, such as style
checking and library-specific optimizations. Domain-specific languages (DSLs) for
program analysis and transformations are attractive candidates for expressing these
scripts, since DSLs allow precise and concise formulations. However, the DSLs are
rarely coupled with robust and mature parsers and type analyzers. Open compilers
are also attractive because they provide solid parsers and type analyses, but im-
plementing analyses and transformation in their general-purpose languages is often
very time-consuming.

In this paper, we obtain the best of both worlds by combining Stratego, a DSL
for program transformation and the open Eclipse Compiler for Java (ECJ), using
a program object model (POM) adapter. The POM adapter welds together the
Stratego runtime and the ECJ abstract syntax tree (AST) by translating Stratego
rewriting operations on-the-fly to suitable method calls on the AST API. This obvi-
ates the need for data serialization. The technique can be applied to many tree-like
APIs, and is reusable for other rewriting systems. Using the POM adapter, Stratego
becomes a compiler scripting language, offering its powerful features for analysis and
transformation such as pattern matching, rewrite rules, generic tree traversals, and
a reusable library of generic transformation functions and data-flow analysis. This
combination is a powerful platform for programming domain-specific analyses and
transformations. We argue that the system can be wielded by advanced developers
and framework providers because large and interesting classes of domain-specific
analyses and transformations can be expressed by reusing the transformation li-
braries provided with Stratego.

The contributions of this paper include the fusing of a DSL for language process-
ing with an open compiler without resorting to data serialization. This brings the
analysis and transformation capabilities of modern compiler infrastructure into the
hands of advanced developers through a convenient and feature-rich transformation
language. The technique is reusable for other transformation languages. It may help
make transformation tools and techniques practical and reusable both by compiler
designers and by framework developers, since it directly integrates them with stable
tools like the Java compiler — developers can write interesting classes of analyses
and transformations easily and compiler designers can experiment with prototypes
of analyses and transformations before committing to a final implementation. We
validate the system’s applicability through a series of examples taken from mature
and well-designed applications and frameworks.

The remainder of this paper is organized as follows: In Sec. 2, we discuss the
POM adapter and how it connects Stratego with ECJ. In Sec. 3, we show the



Download English Version:

https://daneshyari.com/en/article/422106

Download Persian Version:

https://daneshyari.com/article/422106

Daneshyari.com


https://daneshyari.com/en/article/422106
https://daneshyari.com/article/422106
https://daneshyari.com

