
Interaction Nets
With Nested Pattern Matching

Abubakar Hassana,1 and Shinya Satob,2

a Department of Computer Science
King’s College London

Strand, London WC2R 2LS, UK

b Faculty of Econoinformatics
Himeji Dokkyo University

7-2-1 Kamiohno, Himeji-shi, Hyogo 670-8524, JAPAN

Abstract

Reduction rules in Interaction Nets are constrained to pattern match exactly one argument at a time.
Consequently, a programmer has to introduce auxiliary rules to perform more sophisticated matches. We
propose an extension of Interaction Nets which facilitates nested pattern matching on interaction rules. We
then define a practical compilation scheme from extended rules to pure interaction rules. We achieve a
system that provides convenient ways to express Interaction Net programs without defining auxiliary rules.

Keywords: Interaction nets, pattern matching, programming language design.

1 Introduction

Interaction Nets [5] can be considered as a graphical–or visual–programming lan-

guage. Programs are expressed as graphs, and computation is graph reduction.

From another perspective, Interaction Nets are also a low level implementation lan-

guage: we can define systems of Interaction Nets that are instructions for the target

of compilation schemes of other programming languages. For instance, Interaction

Nets have been used for the implementation of optimal reduction [4,6] and other

efficient implementations of the λ-calculus [8]. In addition, there has been various

implementations of Interaction Nets [7,9]. Despite that we can already program in

Interaction Nets (they are Turing complete), they still remain far from being used

as a programming language. Drawing an analogy with functional programming, we

1 abubakar.hassan@kcl.ac.uk
2 shinya@himeji-du.ac.jp

Electronic Notes in Theoretical Computer Science 203 (2008) 79–92

1571-0661© 2008 Elsevier B.V. 

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2008.03.035
Open access under CC BY-NC-ND license.

mailto:abubakar.hassan@kcl.ac.uk
mailto:shinya@himeji-du.ac.jp
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/


only have the pure λ-calculus without syntactic sugar, constants, data-structures,

etc.

In this paper we take a step towards developing a richer language based on

Interaction Nets. Interaction Nets have a very primitive notion of pattern matching

since only two agents can interact at a time. Consequently, many auxiliary agents

and rules are needed to implement more sophisticated matches. These auxiliaries

are implementation details and should be generated automatically other than by

the programmer. To achieve this, we extend Interaction Nets to allow rules with

nested patterns to be defined. We then give a compilation scheme from extended

to ordinary interaction rules.

There has been several works that extend Interaction Nets in some way (see

Section 6.2). Sinot and Mackie’s Macros for Interaction Nets [10] are quite close

to what we present in this paper. They allow pattern matching on more than

one argument by relaxing the restriction of one principal port per agent. The main

difference with our work is that their system does not allow nested pattern matching.

Our system facilitates nested/deep pattern matching of agents.

The rest of this paper is organised as follows: In the next section we give a brief

introduction to Interaction Nets. In Section 3 we motivate our work through an

example. We give the proposed extensions in Section 4, followed by the compilation

schemes in Section 5. In Section 6 we discuss some implementation issues. Finally,

we conclude the paper in Section 7

2 Interaction Nets

We review the basic notions of Interaction Nets. See [5] for a more detailed presen-

tation. Interaction Nets are specified by the following data:

• A set Σ of symbols. Elements of Σ serve as agent (node) labels. Each symbol

has an associated arity ar that determines the number of its auxiliary ports. If

ar(α ∈ Σ) = n, then α has n + 1 ports: n auxiliary ports and a distinguished one

called the principal port.

We use the textual notation x0 − α(x1, ..., xn) to represent an agent α where x0

is the principal port and x1, ..., xn are its auxiliary ports.

• A net built on Σ is an undirected graph with agents at the vertices. The edges

of the net connect agents together at the ports such that there is only one edge

at every port. A port which is not connected is called a free port.

• Two agents (α, β) ∈ Σ×Σ connected via their principal ports form an active pair

(analogous to a redex). An interaction rule ((α, β) → N) ∈ R replaces the pair

(α, β) by the net N . All the free ports are preserved during reduction, and there

is at most one rule for each pair of agents. The following diagram illustrates the

A. Hassan, S. Sato / Electronic Notes in Theoretical Computer Science 203 (2008) 79–9280



Download English Version:

https://daneshyari.com/en/article/422134

Download Persian Version:

https://daneshyari.com/article/422134

Daneshyari.com

https://daneshyari.com/en/article/422134
https://daneshyari.com/article/422134
https://daneshyari.com

