

Electronic Notes in Theoretical Computer Science

Electronic Notes in Theoretical Computer Science 202 (2008) 191–200

www.elsevier.com/locate/entcs

Supermetrics over Apartness Lattice-Ordered Semigroup¹

Gabriel Ciobanu ²

"A.I.Cuza" University, Faculty of Computer Science 700506 Iaşi, Romania

Dănuț Rusu ³

"A.I.Cuza" University, Faculty of Mathematics 700506 Iaşi, Romania

Abstract

We define the notion of supermetrics over apartness lattice-ordered semigroups, present the relationship between supermetrics and additive functions, and prove several conditions of metric completeness.

Keywords: set-set apartness, lattice-ordered semigroup, metrics, completion.

1 Introduction

According to the set-set apartness relation introduced in [12], A and B are apart if their intersection is an empty set. We considering a weaker form of (set-set) apartness where two sets A and B have common elements, but these elements are not considered when we define the apartness relation between A and B.

Let \mathcal{C} be a family of subsets of a nonempty set X satisfying the following axioms:

$$A \cup B \in \mathcal{C}$$
, for all $A, B \in \mathcal{C}$; $A \setminus B \in \mathcal{C}$, for all $A, B \in \mathcal{C}$.

From these axioms it follows that $A \cap B \in \mathcal{C}$, and $A \triangle B \in \mathcal{C}$ for all $A, B \in \mathcal{C}$; moreover $\emptyset \in \mathcal{C}$. Therefore $(\mathcal{C}, \triangle, \emptyset)$ is a monoid, and $(\mathcal{C}, \cup, \cap, \emptyset)$ is a lattice with the least element \emptyset . Additionally, we have $A \triangle B = (A \cup B) \triangle (A \cap B)$ for all $A, B \in \mathcal{C}$.

1571-0661 © 2008 Elsevier B.V. Open access under CC BY-NC-ND license. doi:10.1016/j.entcs.2008.03.015

Research partially supported by CEEX Grant no.133/2006

² Email: gabriel@info.uaic.ro

³ Email: drusu@uaic.ro

These facts inspire us to define a new structure called apartness lattice-ordered semigroup $(S, \cdot, \vee, \wedge, u)$. In such a structure we impose the distributivity of \cdot with respect to \vee and \wedge . The distributivity properties are not satisfied by the above example where we only have $A\triangle(B\cup C)\subseteq (A\triangle B)\cup (A\triangle C)$ and $A\triangle(B\cap C)\supseteq (A\triangle B)\cap (A\triangle C)$. However we can find such properties in the structure of natural number set and in divisibility theory, to mention only few of the examples presented in Section 2.

Let $\mu: \mathcal{C} \to \mathbb{R}_+$ be an additive function on \mathcal{C} . Then the function $d: \mathcal{C} \times \mathcal{C} \to \mathbb{R}_+$ defined by $d(A,B) = \mu(A\triangle B)$ is a pseudo-metric on \mathcal{C} . μ is a metric whenever $\mu(A) = 0$ iff $A = \emptyset$. Since μ is an additive function, then it is (increasing) monotone. Moreover, we have $d(A,B) = \mu(A \cup B) - \mu(A \cap B)$. Considering the structure of apartness lattice-ordered semigroup (S,\cdot,\vee,\wedge,u) and an increasing monotone function $f:S\to\mathbb{R}$, it is possible to define a function $d:S\times S\to\mathbb{R}_+$ by $d(x,y)=f(x\vee y)-f(x\wedge y)$. This function d has several nice properties, and we call it a supermetric. We study some of these properties, including several conditions related to metric completeness.

The structure of the paper is as follows. Section 2 presents the apartness lattice-ordered semigroups. Section 3 defines the supermetrics over this structure, and it provides the main novel concept of the paper. In Section 4 we present the relationship between supermetrics and additive functions. Some results related to the complete apartness lattice-ordered semigroups and to their completions are presented in Sections 5 and 6.

2 Apartness lattice-ordered semigroups

Definition 2.1 An apartness lattice-ordered semigroup (alo-semigroup) is a particular lattice-ordered semigroup system $(S, \cdot, \vee, \wedge, u)$, where

- 1. (S, \cdot, u) is a semigroup with unit u (monoid);
- 2. (S, \vee, \wedge, u) is a lattice with the least element u; if S has a zero z, $z \neq u$ and z is the greatest element;
- 3. for every $a, b, c \in S$ we have
- (i) $ab = (a \lor b)(a \land b)$
- (ii) $a(b \lor c) = ab \lor ac$
- (iii) $a(b \wedge c) = ab \wedge ac$

The usual order in an alo-semigroup $(S, \cdot, \vee, \wedge, u)$ is the order induced by its lattice: $x \leq y$ iff $x = x \wedge y$.

Let S be an alo-semigroup and $R \subseteq S$. R is a sub alo-semigroup of S if R is an alo-semigroup with respect to the operations of S restricted to R, and if R (as a lattice) is a sublattice of S.

We give some examples of alo-semigroups:

1. $S = \{f \mid f : [0,1] \to [0,1]\}, \text{ where } (f \land g)(x) = \max(f(x), g(x)), (f \lor g)(x) = f(x) = f(x), (f(x), g(x)), (f(x), g(x))\}$

Download English Version:

https://daneshyari.com/en/article/422164

Download Persian Version:

https://daneshyari.com/article/422164

<u>Daneshyari.com</u>