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Abstract

Nominal systems are an alternative approach for the treatment of variables in computational systems.
In the nominal approach variable bindings are represented using techniques that are close to first-order
logical techniques, instead of using a higher-order metalanguage. Functional nominal computation can be
modelled through nominal rewriting, in which α-equivalence, nominal matching and nominal unification
play an important role. Nominal unification was initially studied by Urban, Pitts and Gabbay and then
formalised by Urban in the proof assistant Isabelle/HOL and by Kumar and Norrish in HOL4. In this
work, we present a new specification of nominal unification in the language of PVS and a formalisation
of its completeness. This formalisation is based on a natural notion of nominal α-equivalence, avoiding
in this way the use of the intermediate auxiliary weak α-relation considered in previous formalisations.
Also, in our specification, instead of applying simplification rules to unification and freshness constraints,
we recursively build solutions for the original problem through a straightforward functional specification,
obtaining a formalisation that is closer to algorithmic implementations. This is possible by the independence
of freshness contexts guaranteed by a series of technical lemmas.
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1 Introduction

When one introduces variable binders in a language, one thing to be considered

immediately is α-equivalence. For instance, it must be possible to derive the equiv-

alence between the formulas ∃x : x > 1 and ∃y : y > 1, despite the syntactical

differences. Nominal theories treat binders in a way that is closer to informal prac-

tice, using variable names and freshness constraints instead of using indices as in
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explicit substitutions à la de Bruijn. In nominal syntax, there are two kinds of

variables: atoms, representing object-level variables, and meta-variables, or simply

variables. Atoms can be abstracted but not substituted, whereas variables cannot

be abstracted but can be substituted. The notion of substitution is first-order in

the sense that it allows capture, but freshness constraints are taken into account.

Notions such as rewriting (cf. [9]) and unification (cf. [18]) can be directly defined,

without having to rely on involved notions such as β-reduction, as in the higher-

order and explicit substitutions approaches (cf. [12,8,3]).

Nominal unification problems can be solved (modulo α-equivalence) with first-

order substitutions that act over meta-variables, i.e., simply filling the holes

marked with meta-variables (X,Y, Z, . . . ) and allowing capture of variable names

(a, b, c, i, k, . . . ). This can be illustrated by the expressions

7∑
k=0

5∑
i=0

(i−X)i and
7∑

i=0

5∑
k=0

(X − Y )k,

which admit a most general unifier according to the algorithm in [18], with solution

[X �→ k][Y �→ i]. Note that i and k are captured, because these names are bound

or abstracted by the sum operator. In a higher-order unification approach, this

solution would not be accepted because bound variable capture is forbidden.

On the other hand, the unification problem with the expressions

5∑
i=0

(i−X)i and

5∑
k=0

(X − Y )k

has no solution in the nominal setting. One could argue that a solution could

be obtained instantiating [X �→ i][Y �→ i] and renaming k as i. But this is not

possible since i should be a “fresh” name in the scope of the second sum in order to

proceed with this renaming, and the chosen substitution contradicts this condition.

In other words, the meta-variable X should be instantiated uniformly throughout

the problem. We can specify that a name is fresh for a term by writing a freshness

constraint, for example, i#t states that the name i is fresh in the term t. In general,

if two nominal terms are unifiable, the unifier is a pair consisting of a substitution

and a set of freshness constraints.

Translations between nominal unification problems and higher-order pattern uni-

fication problems are given in [6,15].

Contribution

In this paper, we present a functional specification of a new nominal unification

algorithm and formalise its correctness and completeness in the language of the

higher-order proof assistant Prototype Verification System (PVS) [17]. PVS was

chosen because it has a large library about term rewriting systems ([11]) and our

nominal unification theory extends this background about rewriting.
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