
Type Soundness for Path Polymorphism �

Andrés Visoa,1 Eduardo Bonellib,2 Mauricio Ayala-Rincónc,3

a Consejo Nacional de Investigaciones Científicas y Técnicas – CONICET
Departamento de Computación

Facultad de Ciencias Exactas y Naturales
Universidad de Buenos Aires – UBA

Buenos Aires, Argentina
b Consejo Nacional de Investigaciones Científicas y Técnicas – CONICET

Departamento de Ciencia y Tecnología
Universidad Nacional de Quilmes – UNQ

Bernal, Argentina
c Departamentos de Matemática e Ciência da Computação

Universidade de Brasília – UnB
Brasília D.F., Brasil

Abstract

Path polymorphism is the ability to define functions that can operate uniformly over arbitrary recursively
specified data structures. Its essence is captured by patterns of the form x y which decompose a compound
data structure into its parts. Typing these kinds of patterns is challenging since the type of a compound
should determine the type of its components. We propose a static type system (i.e. no run-time analysis)
for a pattern calculus that captures this feature. Our solution combines type application, constants as
types, union types and recursive types. We address the fundamental properties of Subject Reduction and
Progress that guarantee a well-behaved dynamics. Both these results rely crucially on a notion of pattern
compatibility and also on a coinductive characterisation of subtyping.

Keywords: λ-Calculus, Pattern Matching, Path Polymorphism, Static Typing

1 Introduction

Applicative representation of data structures in functional programming languages
consists in applying variable arity constructors to arguments. Examples are:

s = cons (vl v1) (cons (vl v2) nil)

t = node (vl v3) (node (vl v4) nil nil) (node (vl v5) nil nil)

� Work partially funded by the international project DeCOPA STIC-AmSud 146/2012, CONICET, CAPES,
CRNS.
1 Email: aeviso@dc.uba.ar
2 Email: eabonelli@gmail.com
3 Email: ayala@unb.br

Available online at www.sciencedirect.com

Electronic Notes in Theoretical Computer Science 323 (2016) 235–251

1571-0661/© 2016 The Author(s). Published by Elsevier B.V.

www.elsevier.com/locate/entcs

http://dx.doi.org/10.1016/j.entcs.2016.06.015

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

mailto:aeviso@dc.uba.ar
mailto:eabonelli@gmail.com
mailto:ayala@unb.br
http://www.elsevier.com/locate/entcs
http://dx.doi.org/10.1016/j.entcs.2016.06.015
http://dx.doi.org/10.1016/j.entcs.2016.06.015
http://www.sciencedirect.com
http://creativecommons.org/licenses/by-nc-nd/4.0/

These are data structures that hold values, prefixed by the constructor vl for “value”
(v1,2 in the first case, and v3,4,5 in the second). Consider the following function for
updating the values of any of these two structures by applying some user-supplied
function f to it:

upd = f �{f :A⊃B} (vl z �{z:A} vl (f z)

| x y �{x:C,y:D} (upd f x) (upd f y)

| w �{w:E} w)

(1)

Both upd (+1) s and upd (+1) t may be evaluated. The expression to the right of
“=” is called an abstraction and consists of a unique branch; this branch in turn
is formed from a pattern (f), a user-specified type declaration for the variables
in the pattern ({f : A ⊃ B}), and a body (in this case the body is itself another
abstraction that consists of three branches). Type declarations bind variables in both
the pattern and the body. An argument to an abstraction is matched against the
patterns, in the order in which they are written, and the appropriate body is selected.
Notice the pattern x y. This pattern embodies the essence of what is known as path
polymorphism [17,19] since it abstracts a path being “split”. The starting point of this
paper is how to type a calculus, let us call it CAP for Calculus of Applicative Patterns ,
that admits such examples. CAP may be seen as the static patterns fragment of PPC
where instead of the usual abstraction we have alternatives. We next show why the
problem is challenging, explain our contribution and also discuss why the current
literature falls short of addressing it. We do so with an introduction-by-example
approach, for the full syntax and semantics of the calculus refer to Sec. 2.

Preliminaries on typing patterns expressing path polymorphism
Consider these two simple examples:

(nil � 0) cons (vlx �{x:Nat} x+ 1) (vl true) (2)

They should clearly not be typable. In the first case, the abstraction is not capable
of handling cons. This is avoided by introducing singleton types in the form of the
constructors themselves: nil is given type nil while cons is given type cons; these
are then compared. In the second case, x in the pattern is required to be Nat yet
the type of the argument to vl in vl true is Bool. This is avoided by introducing
type application [24] into types: vlx is assigned a type of the form vl @ Nat while
vl true is assigned type vl @ Bool; these are then compared.

Consider next the pattern x y of upd. It can be instantiated with different ap-
plicative terms in each recursive call to upd. For example, suppose A = B = Nat,
that v1 and v2 are numbers and consider upd (+1) s. The following table illustrates
some of the terms with which x and y are instantiated during the evaluation of
upd (+1) s:

A. Viso et al. / Electronic Notes in Theoretical Computer Science 323 (2016) 235–251236

Download English Version:

https://daneshyari.com/en/article/422272

Download Persian Version:

https://daneshyari.com/article/422272

Daneshyari.com

https://daneshyari.com/en/article/422272
https://daneshyari.com/article/422272
https://daneshyari.com

