
Incremental Parametric Development of

Greedy Algorithms

Dominique Cansell1 ,2

LORIA
Université de Metz

Ile du Saulcy
57045 Metz, France

Dominique Méry1 ,3

LORIA
Université Henri Poincaré Nancy 1

BP 239
54506 Vandoeuvre-lès-Nancy, France

Abstract

The event B method provides a general framework for modelling both data structures and algorithms. B
models are validated by discharging proof obligations ensuring safety properties. We address the problem of
development of greedy algorithms using the seminal work of S. Curtis; she has formalised greedy algorithms
in a relational calculus and has provided a list of results ensuring optimality results. Our first contribution
is a re-modelling of Curtis’s results in the event B framework and a mechanical checking of theorems
on greedy algorithms The second contribution is the reuse of the mathematical framework for developing
greedy algorithms from event B models; since the resulting event B models are generic, we show how to
instantiate generic event B models to derive specific greedy algorithms; generic event B developments help in
managing proofs complexity. Consequently, we contribute to the design of a library of proof-based developed
algorithms.

Keywords: Formal method, B event-based method, refinement, safety, greedy algorithms.

1 Introduction

Algorithms provide a class of systems on which one can apply proof-based devel-

opment techniques like the event B method, especially the refinement. The main

1 We thank anonymous referees for their comments; we thank Emilie Balland who has developed preliminary
models of the study, when she was in the MOSEL team for a training period under the supervision of
Dominique Méry. J.-R. Abrial supports our works by friendly messages and comments. Sharon Curtis
provides us comments on early developed models.
2 Email: cansell@loria.fr
3 Email: mery@loria.fr

Electronic Notes in Theoretical Computer Science 185 (2007) 47–62

1571-0661 © 2007 Elsevier B.V. 

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2007.05.028
Open access under CC BY-NC-ND license.

mailto:cansell@loria.fr
mailto:mery@loria.fr
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/


advantage is the fact that we teach data structures and algorithms to students, who

should have simple explanations of why a given algorithm is effectively working or

why some assertion is an invariant for the algorithm under consideration . . . Hence,

we have a good knowledge of algorithmic problems and it is simpler for us to apply

proof-based development techniques on the algorithmic problems. Greedy algo-

rithms constitute a well defined class of algorithms (applications and properties)

and we aim to provide proof-based patterns for facilitating the proof-based devel-

opment (in B) of greedy algorithms.

In a previous work [4], we have developed Prim’s algorithm and we have proved

properties over trees: the inductive definition of trees helps in deriving intermediate

lemmas asserting that the growing tree converges to the minimal spanning tree,

according to the greedy strategy. The resulting algorithm was completely proved

using the proof assistant [7] and we can partially reuse current developed models to

obtain Dijkstra’s algorithm or Kruskal’s algorithm. The greedy strategy is not al-

ways optimal and the optimality of the resulting algorithm is proved by the theorem

24.1 of Cormen’s book [8] in the case of the minimal spanning tree problem. The

gain is clear, since we had a mechanised and verified proof of Prim’s algorithm. The

formalisation of greedy-oriented algorithmic structures was not so complicated but

we were assuming that a general theory on greedy structures could help in designing

our greedy algorithms using the event B method. Fortunately, S. Curtis [9] brings

the theoretical material that was missing in our project; she has formalised in a

relational framework properties required for leading to the optimality of solutions,

when applying a greedy technique. However, we have not explained why we are

choosing the greedy method and what for? Our quest is to propose general proof-

based developments (or patterns) for a given problem or for a given paradigm. We

think that the refinement provides a way to introduce generic elements in developed

models. A second objective is to illustrate the adequacy of the B prover [7], when

checking results over set-theoretical structures; in a sense, our work may seem to

be a plagiarism of Curtis’s paper, but the tool scans each detail to check and it

validates each user hint, and, generally, there is no assisted significant proof with-

out human hint (proof step or tricky lemma). Hence, our paper is an exercise in

checking properties over greedy structures and in proposing generic development

of greedy algorithms; we do not know any other mechanized complete proof-based

developments of greedy algorithms.

1.1 Greedy algorithms

Greedy algorithms are used to solve optimization problems like the shortest path

problem or the best order to execute a set of jobs. A greedy algorithm works in a

local step to satisfy a global constraint. A greedy algorithm can be summarized by

the general algorithm 1, where C is the set of candidates and S is the set containing

the solution or possibly no solution. The goal is to optimize a set of candidates

which is a solution to the problem; the optimization maximizes or minimizes the

value of an objective function. The optimization state is checked by the Boolean

function called goodchoice. Lectures notes of Charlier [6] provide a very complete

D. Cansell, D. Méry / Electronic Notes in Theoretical Computer Science 185 (2007) 47–6248



Download English Version:

https://daneshyari.com/en/article/422335

Download Persian Version:

https://daneshyari.com/article/422335

Daneshyari.com

https://daneshyari.com/en/article/422335
https://daneshyari.com/article/422335
https://daneshyari.com

