
JOLIE: a Java Orchestration Language

Interpreter Engine

Fabrizio Montesi1, Claudio Guidi2, Roberto Lucchi2

Gianluigi Zavattaro2

1Corso di Scienze dell’Informazione di Cesena, University of Bologna, Italy
2Department of Computer Science, University of Bologna, Italy

Abstract

Service oriented computing is an emerging paradigm for programming distributed applications based on
services. Services are simple software elements that supply their functionalities by exhibiting their interfaces
and that can be invoked by exploiting simple communication primitives. The emerging mechanism exploited
in service oriented computing for composing services –in order to provide more complex functionalities– is
by means of orchestrators. An orchestrator is able to invoke and coordinate other services by exploiting
typical workflow patterns such as parallel composition, sequencing and choices. Examples of orchestration
languages are XLANG [5] and WS-BPEL [7]. In this paper we present JOLIE, an interpreter and engine
for orchestration programs. The main novelties of JOLIE are that it provides an easy to use development
environment (because it supports a more programmer friendly C/Java-like syntax instead of an XML-based
syntax) and it is based on a solid mathematical underlying model (developed in previous works of the
authors [2,3,4]).

Keywords: SOA, coordination, orchestration, Java, service, engine

1 Introduction

Service oriented computing is an emerging paradigm for programming distributed

applications based on services. Services are simple software elements that supply

their functionalities by exhibiting their interfaces and that can be invoked by exploit-

ing simple communication primitives, the so-called One-Way and Request-Response

ones. Services can be composed each other in order to design more complex services

by exploiting orchestrators. The orchestrators, indeed, are able to invoke and coor-

dinate other services by exploiting typical workflow patterns such as parallel com-

position, sequencing and choices. Furthermore, composition can be also achieved

� Research partially funded by EU Integrated Project Sensoria, contract n. 016004.
1 Email: famontesi@gmail.com
2 Email: cguidi@cs.unibo.it, lucchi@cs.unibo.it, zavattar@cs.unibo.it

Electronic Notes in Theoretical Computer Science 181 (2007) 19–33

1571-0661 © 2007 Elsevier B.V. 

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2007.01.051
Open access under CC BY-NC-ND license.

http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/


by following a different approach, that is choreography, that allows to design a dis-

tributed system in a top view manner [2,8]. The most credited technology that

deals with service oriented computing is Web Services which aims at guaranteeing

interoperability among different platforms and whose specifications are defined by

means of the XML language. One of the most important specification is WSDL [10]

that defines a language for designing a Web Service interface. An interface allows to

access service functionalities by means of operations. An operation represents the

basic interaction modality of a service and it can be a One-Way operation, where

an invoking message is sent to the service, or a Request-Response one, where an

invoking message is sent to the service assuming that a response message will be

subsequently sent back from it. Web Services can be composed following both or-

chestration and choreography approaches. As far as orchestration is concerned here

we cite WS-BPEL [7], as far as choreography is concerned we cite WS-CDL [9].

In our previous works [2,3,4] we have analyzed orchestration and choreography

as synergic approaches for distributed system design by following a formal approach.

Our formal investigation aims at supplying a precise formal framework on which we

can develop designing tools for service oriented computing systems where orches-

tration and choreography languages play a fundamental role. In particular, we have

formalized both choreography and orchestration languages by means of two process

calculi and we have presented a formal notion of conformance between them based

on bisimulation. As it emerges by those works the orchestration represents w.r.t.

choreography a refinement step towards the implementation of service oriented ap-

plications. Informally, if on the one hand choreography does not produce executable

systems, on the other hand the orchestration makes it possible to program each ser-

vice involved in the application. For the sake of brevity, we do not report the formal

definition of the syntax and semantics of our orchestration language (for a closer

look to the language we remind to the previous works). We simply report a small

example in order to give the flavour of the kind of calculus we have developed. As-

sume a buyer service requests for the price of a particular kind of good to a seller

service by sending a message on a Request-Response operation. Then, it invokes a

purchase order by sending a message on a One-Way operation. We can model such

a service dialog as follows:

Buyer ::= [good := apple; price@S(good, price); ...; apple@S(250),SB ]B

Seller ::= [price(good, eur, good = apple?eur := 100) | apple(n); ...,SS ]S

The buyer is a service located at site B where the good variable is initialized to

the value apple. price@S(good, price) means that the buyer invokes the Request-

Response operation price at the service located at site S sending the variable good

and storing the response into the variable price. Then, the buyer performs some

internal computation (that we do not specify for the sake of brevity). Finally, it

performs apple@S(250) that represents the invocation of the One-Way operation

apple to the service located at S in order to initiate a purchase order of 250 apples.

The ; is a sequential composition operator which means that all the statements must

be executed one after the previous one has completed. The seller is a service located

F. Montesi et al. / Electronic Notes in Theoretical Computer Science 181 (2007) 19–3320



Download English Version:

https://daneshyari.com/en/article/422354

Download Persian Version:

https://daneshyari.com/article/422354

Daneshyari.com

https://daneshyari.com/en/article/422354
https://daneshyari.com/article/422354
https://daneshyari.com

