
Reliable Composite Web Services Execution:
Towards a Dynamic Recovery Decision

Rafael Angarita 1

PSL, Université Paris-Dauphine
75775 Paris Cedex 16

France CNRS, LAMSADE UMR 7243

Yudith Cardinale2

Departamento de Computación
Universidad Simón Boĺıvar

Caracas, Venezuela

Marta Rukoz 3

PSL, Université Paris-Dauphine
75775 Paris Cedex 16

France CNRS, LAMSADE UMR 7243
Université Paris Ouest Nanterre La Défense

France

Abstract

During the execution of a Composite Web Service (CWS), different faults may occur that cause WSs fail-
ures. There exist strategies that can be applied to repair these failures, such as: WS retry, WS substitution,
compensation, roll-back, or replication. Each strategy has advantages and disadvantages on different ex-
ecution scenarios and can produce different impact on the CWS QoS. Hence, it is important to define
a dynamic fault tolerant strategy which takes into account environment and execution information to ac-
cordingly decide the appropriate recovery strategy. We present a preliminary study in order to analyze the
impact on the CWS total execution time of different recovery strategies on different scenarios. The exper-
imental results show that under different conditions, recovery strategies behave differently. This analysis
represents a first step towards the definition of a model to dynamically decide which recovery strategy is
the best choice by taking into account the context-information when the failure occurs.

Keywords: Fault-tolerance, dynamic, execution, context-aware.

1 Email: rafael.angarita@lamsade.dauphine.fr
2 Email: yudith@ldc.usb.ve
3 Email: marta.rukoz@lamsade.dauphine.fr

Available online at www.sciencedirect.com

Electronic Notes in Theoretical Computer Science 302 (2014) 5–28

1571-0661/© 2014 Published by Elsevier B.V.

www.elsevier.com/locate/entcs

http://dx.doi.org/10.1016/j.entcs.2014.01.018

mailto:rafael.angarita@lamsade.dauphine.fr
mailto:yudith@ldc.usb.ve
mailto:marta.rukoz@lamsade.dauphine.fr
http://www.elsevier.com/locate/entcs
http://dx.doi.org/10.1016/j.entcs.2014.01.018
http://dx.doi.org/10.1016/j.entcs.2014.01.018
http://www.sciencedirect.com


1 Introduction

Nowadays, SOA architecture is used as a platform for business applications for

accessing data and services in distributed environments. The constantly increasing

number of such applications currently deployed over the Internet is enabled by

the latest SOA techniques, such as Web Services (WS) and Web 3.0, and is a

consequence of the need for business integration and collaboration. With machine

intelligence, users can resolve complex problems that require the interaction among

different tasks. One of the major goals of the Web 3.0 is to support automatic and

transparent WS composition and execution, allowing a complex user request to be

satisfied by a Composite Web Service (CWS). Hence, in a CWS, functionalities

of individual WSs (possibly from different providers) are combined to resolve the

complex query [2].

Most of the generic or domain-tailored solutions for creating, executing, and

managing such CWSs have been extensively treated in the literature, exhibit-

ing sophisticated interfaces and a multitude of connectors to subsystems to rep-

resent functional properties, and increasing support for non-functional proper-

ties [5,3,13,17,11,6,15]. Nevertheless, recovery of failures for reliable execution have

received relatively limited attention.

During the execution of a CWS, different faults may occur that cause a WS fail-

ure. However, a fault-tolerant CWS is the one that, upon a service failure, ends up

the whole composite service (e.g., by retrying, substituting, or replicating the faulty

WS) or leaves the execution in a safe state (e.g., by rollbacking or compensating

the faulty WS and the related executed WSs). In this sense, fault tolerant CWS

becomes a key mechanism to cope with challenges of open-world applications in

dynamic changing and untrusted operating environments to ensure that the whole

system remains in a consistent state even in the presence of failures [23].

Several techniques have been proposed to implement fault tolerant CWS exe-

cution. In some works, transactional properties of component WSs (e.g., retriable,

compensable or not) are considered to ensure the classical ACID (all-or-nothing)

properties in CWSs [13,11,6,15,9,4]. In this context, failures during the execution

of a CWS can be repaired by backward or forward recovery processes. Backward

recovery implies to undo the work done until the failure and go back to the ini-

tial consistent state (before the execution started), by roll-back or compensation

techniques. Forward recovery tries to repair the failure and continue the execution,

using retry and substitution, for example. In previous works, we presented our

solutions based on backward and forward recovery [8,10].

However, backward recovery means that users do not get the desired answer to

their queries, besides roll-back techniques that claim for logs in persistent storage to

enable recovery after a re-start, reboot, or crash. The need for synchronous logging

slows down the execution speed during normal operation and the reliability of these

mechanisms depends on the reliability of the storage. Forward recovery could imply

long waiting times, due of the invested time to repair failures until users finally get

the response.

R. Angarita et al. / Electronic Notes in Theoretical Computer Science 302 (2014) 5–286



Download English Version:

https://daneshyari.com/en/article/422370

Download Persian Version:

https://daneshyari.com/article/422370

Daneshyari.com

https://daneshyari.com/en/article/422370
https://daneshyari.com/article/422370
https://daneshyari.com

