
Platform-Variant Applications from
Platform-Independent Models via Templates

Nuno Amálio1 Christian Glodt2 Frederico Pinto3

Pierre Kelsen4

University of Luxembourg
6, r. Coudenhove-Kalergi, L-1359 Luxembourg

Abstract

By raising the level of abstraction from code to models, model-driven development (MDD) emphasises
design rather than implementation and platform-specificity. This paper presents an experiment with a
MDD approach, which takes platform-independent models and generates code for various platforms from
them. The platform code is generated from templates. Our approach is based on EP, a formal executable
modelling language, supplemented with OCL, and FTL, a formal language of templates. The paper’s
experiment generates code for the mobile platforms Android and iPhone from the same abstract functional
model of a case study. The experiment shows the feasibility of MDD to tackle present day problems,
highlighting many benefits of the MDD approach and opportunities for improvement.

Keywords: Software Product families, model-driven development, executable models, templates.

1 Introduction

A goal of model driven development (MDD) [21] is to enable software engineers

to focus on design. This is achieved through the use of models expressing design

concepts that abstract away from implementation and platform-specific details. De-

spite the increase in level of abstraction of programming languages and platforms in

the past two decades, the diversity and complexity of current platform technologies

makes manual development of code an arduous and expensive effort [21]. Modern

platforms require considerable in-depth technical knowledge that is difficult to grasp

by non-expert developers, a prominent example being mobile devices [15,14,1]. This

cuts off an important source of creativity: talented people may be inspired to create

1 Email: nuno.amalio@uni.lu
2 Email: christian.glodt@uni.lu
3 Email: fgasparp@gmail.com
4 Email: pierre.kelsen@uni.lu

Available online at www.sciencedirect.com

Electronic Notes in Theoretical Computer Science 279 (3) (2011) 3–25

1571-0661 © 2011 Elsevier B.V. 

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2011.11.035
Open access under CC BY-NC-ND license. 

mailto:nuno.amalio@uni.lu
mailto:christian.glodt@uni.lu
mailto:fgasparp@gmail.com
mailto:pierre.kelsen@uni.lu
http://www.elsevier.com/locate/entcs
http://dx.doi.org/10.1016/j.entcs.2011.11.035
http://dx.doi.org/10.1016/j.entcs.2011.11.035
http://www.sciencedirect.com
http://creativecommons.org/licenses/by-nc-nd/3.0/


novel applications, but only few have the time, energy and technical skill to dig into

the intricacies of low-level platform programming. The problems of platform com-

plexity and diversity suggest a move to a higher level of abstraction. However, novel

features of modern devices require implementations to properly evaluate design de-

cisions. Interaction [15,14,1], performance, and power consumption [22], common

in mobile computing, are difficult to analyse from abstract models; they require

experimentation with implementations.

In MDD, these issues can be tackled through a model-centric approach: all lower

level code is generated from functional models of the system, also called platform-

independent models (PIMs) in the model-driven architecture (MDA) [18], which is

possible provided models fully describe the system’s structure and behaviour. This

approach tackles platform complexity and diversity, and enables the early construc-

tion of implementations from design models. Due to their level of abstraction,

models can be articulated to describe families of related products, abstracting away

from many intricacies of execution platforms. From such models, it is possible to

build reusable transformations that enable the derivation of platform-variant prod-

ucts. Finally, from models and transformations to code, it is possible to obtain

prototypes for experimentation of design decisions.

This paper presents an experiment with our MDD approach based on executable

modelling and templates. Our approach enables the generation of code for various

platforms from the same functional model. It is as follows:

‚ Applications are described using PIMs, describing structure and behaviour. PIMs

are expressed in terms of abstract design primitives, yet concrete enough to enable

generation of multi-platform code from them. PIMs’ level of abstraction mitigates

the need for platform expertise.

‚ Platform-specific artifacts are generated by instantiating templates of the plat-

form’s catalogue. The choice for the alternative execution platforms is a varia-

tion point in a product family, where variants are obtained automatically through

code-generation by instantiating templates. Catalogues of templates constitute a

repository of knowledge that is maintained by platform experts.

The approach presented here is based on formal languages: (a) models are expressed

using the executable modelling language EP [16,17] supplemented with OCL [23],

(b) catalogues of templates are expressed using the Formal Template Language

(FTL) [4,2]. This approach gives generation of platform artifacts a first-class status:

generative reusable assets are described in FTL. The experiment presented here

evaluates this approach using a present day problem: building mobile-applications

that have the same functionality, but need to run on different execution platforms.

This is illustrated with Google’s Android and Apple’s iPhone mobile platforms.

2 Background

We give some background on both EP, the language used to express abstract models,

and FTL, the language used to express templates.

N. Amálio et al. / Electronic Notes in Theoretical Computer Science 279 (3) (2011) 3–254



Download English Version:

https://daneshyari.com/en/article/422570

Download Persian Version:

https://daneshyari.com/article/422570

Daneshyari.com

https://daneshyari.com/en/article/422570
https://daneshyari.com/article/422570
https://daneshyari.com

