Available online at www.sciencedirect.com

SciVerse ScienceDirect Theoretical Computer

Science

ELSEVIER Electronic Notes in Theoretical Computer Science 279 (3) (2011) 27-40
www.elsevier.com/locate/entcs

Nested Lambda Expressions with Let
Expressions in C++ Template Metaprograms

Abel Sinkovics

Department of Programming Languages and Compilers
Eétvos Lorand University
Budapest, Hungary
e-mail: abel@elte.hu

Abstract

More and more C++ applications use template metaprograms directly or indirectly by using libraries based
on them. Since C++ template metaprograms follow the functional paradigm, the well known and widely
used tools of functional programming should be available for developers of C++ template metaprograms as
well. Many functional languages support let expressions to bind expressions to names locally. It simplifies
the source code, reduces duplications and avoids the pollution of the namespace or namespaces. In this
paper we present how let expressions can be introduced in C++ template metaprograms. We also show
how let expressions can be used to implement lambda expressions. The Boost Metaprogramming Library
provides lambda expressions for template metaprograms, we show their limitations with nested lambda
expressions and how our implementation can handle those cases as well.

Keywords: C++, boost::mpl, template metaprogramming, functional programming

1 Introduction

Let expressions are common tools in functional programming languages. Their
purpose is giving names to expressions in the scope of another expression. For
example in Haskell [19] let expressions look like the following:

let {dl ; ... ; dn } in e

where d1, ..., dn are declarations in the scope of the e expression.

Templates were designed to capture commonalities of abstractions without per-
formance penalties at runtime, however in 1994 Erwin Unruh showed how they can
force any standard C++ compiler to execute specific algorithms as a side effect
of the compilation process. This application of templates is called C++ template
metaprogramming, which turned out to form a Turing-complete sub-language of
CH++. [3]

Template metaprogramming has many application areas today, like implement-
ing expression templates [15], static interface checking [6,9], active libraries [16], or

1571-0661 © 2011 Elsevier B.V. Open access under CC BY-NC-ND license
doi:10.1016/j.entcs.2011.11.036


http://www.elsevier.com/locate/entcs
http://dx.doi.org/10.1016/j.entcs.2011.11.036
http://dx.doi.org/10.1016/j.entcs.2011.11.036
http://www.sciencedirect.com
http://creativecommons.org/licenses/by-nc-nd/3.0/

28 A. Sinkovics / Electronic Notes in Theoretical Computer Science 279 (3) (2011) 2740

domain specific language embedding [4,17,8,18].

C++ template metaprograms are functional programs [7,11]. Unfortunately
they have a complex syntax leading to programs that are difficult to write and
understand. Template metaprograms consist of template metafunctions [1]. There
may be sub expressions that are used multiple times in the body of a metafunction,
which has to be copied leading to maintenance issues or moved to a new meta-
function leading to namespace pollution. The ability to bind expressions to names
locally in metafunctions could simplify both the development and maintenance of
C++ template metaprograms.

Many programming languages provide tools to create no-name function objects
inside an expression. These tools are called lambda expressions and by using them
programmers don’t have to create small utility functions when they need function
objects with simple implementations. There is no lambda expression support in the
current C++ standard, however there are workarounds implemented as a library.
The Phoenix and Lambda libraries of Boost provide tools to build lambda expres-
sions [17]. The upcoming standard, C++0x [13] has language support for lambda
expressions. Without lambda expressions, the business logic is scattered across lots
of small utility functions making the code difficult to understand and change.

The Boost Metaprogramming Library [17] provides tools to build lambda ex-
pressions for algorithms executed at compilation time. Arguments of the lambda
expressions are called _1, 2, etc. This causes issues when programmers have to
create nested lambda expressions inside other lambda expressions. The solution we
present for let expressions can be used to implement lambda expressions in C+-+
template metaprograms that can express nested lambda expressions correctly. A
library implemented based on the ideas presented here is available at [18].

The rest of the paper is organised as the following. In section 2 we detail
the concept of let expressions. In section 3 we present our approach to add let
expressions to a functional language, that has no built-in support for it. In section
4 we present how our approach can be used to implement nested lambda expressions.
In section 5 we extend our approach to support recursive let expressions. We present
future works in section 6 and we summarise our results in section 7.

2 Let expressions

Let expressions in Haskell bind declarations to names. A declaration can use pattern
matching to bind values to names, for example:

let

a=1f11

(b, ¢) = returnTuple 13
in

a+b+c

The above example binds the expression £ 11 to a. It evaluates returnTuple 13
and tries matching the result of it to the pattern (b, c). When it doesn’t match,



Download English Version:

https://daneshyari.com/en/article/422571

Download Persian Version:

https://daneshyari.com/article/42257 1

Daneshyari.com


https://daneshyari.com/en/article/422571
https://daneshyari.com/article/422571
https://daneshyari.com

