
Generative Version of the FastFlow Multicore
Library

Zalán Szűgyi1 Norbert Pataki2

Department of Programming Languages and Compilers
Eötvös Loránd University

Budapest, Hungary

Abstract

Nowadays, one of the most important challenges in programming is the efficient usage of multicore proces-
sors. Many new programming languages and libraries support multicore programming.
FastFlow is one of the most promising multicore C++ libraries. Unfortunately, a design problem occurs
in the library. One of the most important methods is pure virtual function in a base class. This method
supports the communication between different threads. Although, it cannot be template function because
of the virtuality, hence, the threads pass and take argument as a void* pointer. The base class is not
template neither. This is not typesafe approach. We make the library more efficient and safer with the help
of generative technologies.

Keywords: multicore programming, C++, FastFlow, template

1 Introduction

The recent trend to increase core count in processors has led to a renewed inter-

est in the design of both methodologies and mechanisms for the effective parallel

programming of shared memory computer architectures. Those methodologies are

largely based on traditional approaches of parallel computing.

Usually, low-level approaches supplies the programmers only with primitives

for flows-of-control management (creation, destruction), their synchronization and

data sharing, which are usually accomplished in critical regions accessed in mutual

exclusion (mutex). For instance, POSIX thread library can be used to this purpose.

Programming parallel complex applications in this way is certainly hard; tuning

them for performance is often even harder due to the non-trivial effects induced by

memory fences (used to implement mutex) on data replicated in the core’s caches.

1 Email: lupin@ludens.elte.hu
2 Email: patakino@elte.hu

Available online at www.sciencedirect.com

Electronic Notes in Theoretical Computer Science 279 (3) (2011) 73–84

1571-0661 © 2011 Elsevier B.V. 

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2011.11.039
Open access under CC BY-NC-ND license. 

mailto:lupin@ludens.elte.hu
mailto:patakino@elte.hu
http://www.elsevier.com/locate/entcs
http://dx.doi.org/10.1016/j.entcs.2011.11.039
http://dx.doi.org/10.1016/j.entcs.2011.11.039
http://www.sciencedirect.com
http://creativecommons.org/licenses/by-nc-nd/3.0/


Indeed, memory fences are one of the key sources of performance degradation in

communication intensive (e.g. streaming) parallel applications. Avoiding memory

fences means not only avoiding locks but also avoiding any kind of atomic operation

in memory (e.g. Compare-And-Swap, Fetch-and-Add). While there exists several

assessed fence-free solutions for asynchronous symmetric communications, these re-

sults cannot be easily extended to asynchronous asymmetric communications that

are necessary to support arbitrary streaming networks.

The important approach to ease programmer’s task and improve program effi-

ciency consist in to raise the level of abstraction of concurrency management prim-

itives. For example, threads might be abstracted out in higher-level entities that

can be pooled and scheduled in user space possibly according to specific strategies

to minimize cache flushing or maximize load balancing of cores. Synchronization

primitives can be also abstracted out and associated to semantically meaningful

points of the code, such as function calls and returns, loops, etc.

This kind of abstraction significantly simplify the hand-coding of applications.

However, it is still too low-level to effectively automatize the optimization of the par-

allel code: the most important weakness here is in the lack of information concerning

the intent of the code (idiom recognition); inter-procedural/component optimization

further exacerbates the problem.

Recently, there has been a trend of generating programs from high-level spec-

ifications. This is called the generative approach, which focuses on synthesizing

implementations from higher-level specifications rather than transforming them.

From this approach, programmers’ goal is captured by the specification. In addi-

tion, technologies for code generation are well developed (staging, partial evaluation,

automatic programming, generative programming) [7]. FastFlow [4], TBB [13] and

OpenMP [8] follow this approach. The programmer needs to explicitly define par-

allel behaviour by using proper constructs, which clearly bound the interactions

among flows-of-control, the read-only data, the associativity of accumulation oper-

ations and the concurrent access to shared data structures.

FastFlow is a parallel programming framework for multi-core platforms based

upon non-blocking lock-free/fence-free synchronization mechanisms. The frame-

work is composed of a stack of layers that progressively abstracts out the program-

ming of shared-memory parallel applications. The stack has two different goals:

to ease the development of applications and make them very fast and scalable.

FastFlow is particularly targeted to the development of streaming applications.

Templates are key elements of C++ programming language [15]. They enable

data structures and algorithms be parameterized by types thus capturing com-

monalities of abstractions at compile time without performance penalties at run-

time. Generic programming, a recently emerged programming paradigm for writing

reusable components – most cases data structures and algorithms – is implemented

in C++ with heavy use of templates.

The worker threads of FastFlow are passing data between each other via void*

pointers, which are then processed by the receiving thread. This is rather necessary

for implementation reasons. At the core of the FastFlow framework there is an

Z. Szűgyi, N. Pataki / Electronic Notes in Theoretical Computer Science 279 (3) (2011) 73–8474



Download English Version:

https://daneshyari.com/en/article/422574

Download Persian Version:

https://daneshyari.com/article/422574

Daneshyari.com

https://daneshyari.com/en/article/422574
https://daneshyari.com/article/422574
https://daneshyari.com

