
Symbolic Input-Output Conformance
Checking for Model-Based Mutation Testing

Bernhard K. Aichernig and Martin Tappler1

Institute for Software Technology
Graz University of Technology, Austria

Abstract

This paper presents an approach to use symbolic input output conformance checking for mutation-based
test case generation. In this approach, a possibly non-deterministic action system model is used as basis for
generating a number of mutants. Subsequently after the generation of mutants, the original model and the
mutants are simultaneously symbolically executed and tested for conformance. Distinguishing test cases
are generated, if non-conformance is detected during this process. Several optimisations of the conformance
check are presented and their effectiveness is underpinned by listing experimental results.

Keywords: model-based testing, mutation testing, symbolic execution, action systems, sioco,ioco.

1 Introduction

In order to assure that a system under test (SUT) fulfils given requirements it is

commonly executed and tested under conditions specified through a set of test cases.

Traditional software testing however suffers from a number of drawbacks. It is for

instance inherently incomplete and since it is a manual task, it is labour intensive

and error-prone. Model-Based Testing aims at improving upon this situation, by

utilising abstract models of the SUT [21]. Most importantly, models allow the

automatic generation of test cases based on some criterion. Hence, the ad hoc

nature of software testing is replaced by a well-defined process.

Model-Based Mutation Testing uses a fault-based approach to test case selection

[6]. More concretely, mutation-based test case generation consists of two main steps:

(1) mutated models are generated by injecting faults into the original model and (2)

test cases are generated, which would reveal non-conforming behaviour of mutants.

The rationale behind this approach is that a SUT implementing a non-conforming

mutant would be detected to be faulty by the test case corresponding to the mutant.

1 Authors are listed in alphabetical order.

Available online at www.sciencedirect.com

Electronic Notes in Theoretical Computer Science 320 (2016) 3–19

1571-0661/© 2016 The Authors. Published by Elsevier B.V.

www.elsevier.com/locate/entcs

http://dx.doi.org/10.1016/j.entcs.2016.01.002

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://www.elsevier.com/locate/entcs
http://dx.doi.org/10.1016/j.entcs.2016.01.002
http://dx.doi.org/10.1016/j.entcs.2016.01.002
http://www.sciencedirect.com
http://creativecommons.org/licenses/by/4.0/


Fig. 1. The model-based mutation test case generation process.

There is a variety of conformance relations in use today, like refinement [5]

or Input Output Conformance (ioco) [2]. In the following, we will use Symbolic

Input Output Conformance (sioco) as defined by Frantzen et al. [14] to decide

conformance between mutants and the original model. We have chosen sioco as it

is well-suited for reactive systems and its symbolic nature provides a solution to the

state space explosion faced when working concretely. However, we rather test for

non-conformance than for conformance in the test case generation process depicted

in Figure 1. More specifically, we generate sequences of actions and conditions

leading to states where non-conformance of first-order mutants, i.e. mutants created

by injecting a single fault, may be observed.

The contribution of our work is twofold. First, we give a formalisation of the sub-

sequently introduced variant of the action system formalism. For this purpose, we

will adapt the symbolic framework given in [14] and follow the same style. Second,

we will present an efficient fully symbolic check for non-conformance between two

action systems, which may behave non-deterministically. We demonstrate the effi-

ciency through a comparison with a previously implemented concrete ioco checker.

2 Action Systems

Action systems were first defined by Back and Kurkio-Suonio [7] as a modelling for-

malism for distributed systems. We have chosen this formalism as it can effectively

be used for modelling reactive systems [8] and because recently, it has also been

used for model-based mutation testing [5]. There exist several variations of it like

object-oriented action systems [9] and it also served as an inspiration for Event-B

[1]. However, the action system formalism used here is more restricted than other

variations. In some aspects it is similar to the Event-B language, but for instance

it does not support set-theoretic constructs like Event-B.

Informally, the execution of an action system starts in an initial state which

is manipulated by repeatedly executing actions. During this process one action is

chosen at each step in a non-deterministic fashion from the set of enabled actions.

An action is enabled iff its guard is satisfiable in the current state. The execution

terminates when the set of enabled actions is empty.

B.K. Aichernig, M. Tappler / Electronic Notes in Theoretical Computer Science 320 (2016) 3–194



Download English Version:

https://daneshyari.com/en/article/422665

Download Persian Version:

https://daneshyari.com/article/422665

Daneshyari.com

https://daneshyari.com/en/article/422665
https://daneshyari.com/article/422665
https://daneshyari.com

