
Bound Analysis for Whiley Programs

Min-Hsien Wenga,1, Mark Uttinga,b,2, and
Bernhard Pfahringera,3

a Computer Science Department
Waikato University

Hamilton, New Zealand

b University of the Sunshine Coast, Australia

Abstract

The Whiley compiler can generate naive C code, but the code is inefficient because it uses infinite integers
and dynamic array sizes. Our project goal is to build up a compiler that can translate Whiley programs into
efficient OpenCL code with fixed-size integer types and fixed-size arrays, for parallel execution on GPUs.
This paper presents an abstract interpretation-based bound inference approach along with symbolic analysis
for Whiley programs. The source Whiley program is first analyzed by using our symbolic analyzer to find
the matching pattern and make any necessary program transformation. Then the bound analyzer is used
to analyze the transformed program to make use of primitive integer types rather than third-party infinite
integer type (e.g. using GMP arbitrary precision library). The bound analysis results provide conservative
estimates of the ranges of integer variables and array sizes so that efficient code can be generated and integer
overflows avoided. The bound analyzer combines the bound consistency technique along with a widening
operator to give fast time of solving program constraints and of converging to the fixed point. Several
example programs are used to illustrate the bound analyzer algorithm and the program transformation.

Keywords: Static Analysis, Range Analysis, Abstract Interpretation, Bound Consistency, Widening
Operator, Symbolic Analysis, Pattern matching, Program Transformation.

1 Introduction

Static program analysis techniques validates the consistency between software spec-

ifications and program behaviors using mathematical methodologies. For example,

the bound consistency technique is widely used to solve the finite constraint do-

main problem (a.k.a constraint satisfaction problem)[17]. However, the problems of

object-oriented program languages, such as side-effect problems or non-deterministic

results, makes it a grand challenge[15] to create such a compiler, with automated

1 Email:mw169@students.waikato.ac.nz
2 Email: marku@waikato.ac.nz
3 Email: bernhard@waikato.ac.nz

Available online at www.sciencedirect.com

Electronic Notes in Theoretical Computer Science 320 (2016) 53–67

1571-0661/© 2016 The Authors. Published by Elsevier B.V.

www.elsevier.com/locate/entcs

http://dx.doi.org/10.1016/j.entcs.2016.01.005

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

mailto:mw169@students.waikato.ac.nz
mailto:marku@waikato.ac.nz
mailto:bernhard@waikato.ac.nz
http://www.elsevier.com/locate/entcs
http://dx.doi.org/10.1016/j.entcs.2016.01.005
http://dx.doi.org/10.1016/j.entcs.2016.01.005
http://www.sciencedirect.com
http://creativecommons.org/licenses/by-nc-nd/4.0/


mathematical and logical reasoning, that can verify the specifications and detect

the errors at compile-time.

Whiley[20] is a new and verification-friendly programming language with the

aim of resolving verification issues that arise from object-oriented programming

languages. Whiley verifying compiler can detect bugs at compile-time and convert

the program into bug-less Java or C code. However, translating high-level Whiley

programs into efficient implementations has some challenges, for instance, the use

of unbounded integers causes substantial slowdown on the performance of Whiley

implementations.

This paper aims to describe the design of bound analyzer along with symbolic

analyzer to assist the code generator to produce behavior-predicable C code that

makes use of efficient integer data types in the implementation. The main objectives

are summarized as below:

• Recognize patterns of a Whiley program to make any necessary program trans-

formation.

• Analyze the transformed program to produce the bound constraints.

• Infer the bounds using propagation rules and speed up bound analysis using the

widening operator.

• Determine the efficient integer data types for the code generator.

This paper is organized as follows. Section 2 reviews some related works about

static analysis, bound analysis and symbolic loop bounds. Section 3 describes the

bound inference procedure, fixed-point approximation using widen operator, and

pattern matching along with program transformation. Section 4 illustrates the

algorithm of bound analysis with example programs and shows the performance

of generated C code with/without program transformation. And the final section

concludes the future work.

2 Related Work

2.1 Static Bound Analysis

Many automatic static program analyzers have been developed to improve the

program correctness and produce the high-quality software, such as ESC/Java

Checker[10] and Microsoft Spec# Static Verifier[2].

The static analysis using abstract interpretation, which approximates the ab-

stract semantics of a computer program without executing all the calculation, al-

lows the compiler to detect errors and find applicable optimization. For example,

Microsoft Research Clousot[9] can statically check the absence of run-time er-

rors and infer facts to discharge assertions.

However, computing the fixed-point in abstract domain is iterative and some-

times time-consuming. The abstract interpretation-based widening operator[6] can

rely on bound results at earlier iterations, and then widen the open-ended bounds

to ± inf, so as to accelerate the converging time to the fixed point. But the widening

M.-H. Weng et al. / Electronic Notes in Theoretical Computer Science 320 (2016) 53–6754



Download English Version:

https://daneshyari.com/en/article/422668

Download Persian Version:

https://daneshyari.com/article/422668

Daneshyari.com

https://daneshyari.com/en/article/422668
https://daneshyari.com/article/422668
https://daneshyari.com

